

PI6C10810

1.2V-2.5V, 250MHz, 1:10 Networking Clock Buffer

Features

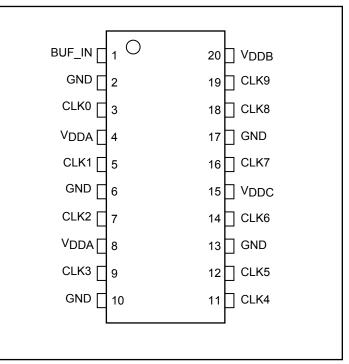
- High-speed, low-noise, non-inverting split 1-10 buffer
- Maximum Frequency up to 250 MHz
- Low output skew < 60ps (Bank A, 2.5V)
- Low duty cycle distortion < 200ps
- Low propagation delay < 2.0ns (2.5V)
- Choice of 1.2V, 1.5V, 1.8V or 2.5V supply voltage on Bank A, Bank B, Bank C
- Industrial temperature range: -40°C to 85°C
- Packages (Pb-free & Green): 20-pin, TSSOP (L20)

20-pin, SSOP (H20) 20-pin, QSOP (Q20)

V_{DDA} CLK0 CLK1 BUF IN CLK2 CLK3 CLK4 CLK5 CLK6 CLK7 CLK8 CLK9 VDDC VDDB

Description

The PI6C10810 is a 1.2V to 2.5V high-speed, low-noise 1-10 non-inverting clock buffer. The key goal in designing the PI6C10810 is to target networking applications that require low-skew, low-jitter, and high-frequency clock distribution.


Providing output-to-output skew as low as 60ps, the PI6C10810 is an ideal clock distribution device for synchronous systems. Designing synchronous networking systems requires a tight level of skew from a large number of outputs.

CLK0-4 operate from V_{DDA} supply.

CLK5-6 operate from V_{DDC} supply.

CLK7-9 operate from V_{DDB} supply.

Pin Configuration

Pin Description

Pin Name	Description
BUF_IN	Input
CLK [0:9]	Outputs
GND	Ground
V _{DDA} , V _{DDB} , V _{DDC}	Power (1.2V, 1.5V, 1.8V, 2.5V)

Block Diagram

2.5V Absolute Maximum Ratings (Above which the useful life may

be impaired. For user guidelines only, not tested.)

65°C to +150°C
-0.5V to +3.6V
–0.5V to V_{DD} +0.5V
–0.5V to V_{DD} +0.5V

Note: Stresses greater than those listed under MAXI-MUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2.5V DC Characteristics (Over Operating Range: V_{DDA} , V_{DDB} , $V_{DDC} = 2.5V \pm 0.2V$, $T_A = -40^{\circ}$ to 85°C)

Parameters	Description	Test Conditions ⁽¹)	Min.	Typ. ⁽²⁾	Max.	Units
V _{DD}	Supply Voltage			2.3	2.5	2.7	
V _{IH}	Input HIGH Voltage	Logic HIGH level		1.7		3.6	V
V _{IL}	Input LOW Voltage	Logic LOW level	Logic LOW level			0.7	V
II	Input Current	$V_{DD} = Max$, $Vin = V_{DD}$ or GND	I pin			15	μA
	Output High Voltage	$V_{DD} = Min., V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -1 mA$	2.0			
V _{OH}			$I_{OH} = -2mA$	1.7			
			$I_{OH} = -8mA$	1.7			
			$I_{OL} = 1 mA$			0.1	V
V _{OL}	Output LOW Voltage	V_{DD} = Min., V_{IN} - V_{IH} or V_{IL}	$I_{OL} = 2mA$			0.2	
			$I_{OL} = 8mA$			0.2	1

Notes:

1. For Max. or Min. conditions, use appropriate operating range values.

2. Typical values are at $V_{DD} = 2.5V$, +25°C ambient and maximum loading.

2.5V AC Characteristics (Over Operating Range: V_{DDA} , V_{DDB} , $V_{DDC} = 2.5V \pm 0.2V$, $T_A = -40^{\circ}$ to 85°C)

Parameters	Description		Test Conditions ⁽¹⁾	Min.	Тур	Max.	Units
F _{IN}	Input Frequency			0		250	MHz
$t_{PLH,} t_{PHL}^{(2)}$	Input Frequency Propagation Delay BUF_IN to CLKn Output to Output Skew between any two outputs of the same device @ same transition Pulse Skew between opposite transitions (tPHL-tPLH) of the same output Part to Part Skew between two identical outputs of different parts on the same board ⁽⁴⁾ Duty Cycle In @ Ins edge rate Duty Cycle Out Additive Jitter		1.0	1.5	2.0		
	Output to Output Skew	Bank A (CLK0 - CLK4)		-60		60	
$t_{SK(O)}^{(3)}$	5 1	Bank C (CLK5 - CLK6)		-30		30	
	same transition	Bank B (CLK7 - CLK9)	$R_{L} = 500\text{-Ohm, }C_{L} = 3pF, 125 \text{ MHz Out-} puts are measured @} V_{DD}/2$	-150		150	ps
$t_{SK(P)}^{(3)}$					100	200	
$t_{SK(T)}^{(3)(5)}$						300	
t _{dc_in}	Duty Cycle In @ Ins edge	rate		45		55	0/
t _{dc_out}	Duty Cycle Out]	40		57.5	%
tj ⁽⁵⁾	Additive Jitter					50	ps
t _{R(O)}	Output Rise Time 20%-809	Output Rise Time 20%-80% CLKn			0.5	0.7	
t _{F(O)}	Output Fall Time 80%-20%	6 CLKn	3pF		0.5	0.7	ns

1. See test circuit and waveforms.

2. Minimum limits are guaranteed but not tested on Propagation Delays.

3. Skew measured at worst case temperature (max. temp).

4. Identical conditions: loading, transitions, supply voltage, temperature, package type and speed grade.

5. Guaranteed by design

Downloaded from Arrow.com.

1.8V Absolute Maximum Ratings (Above which the useful life may

be impaired. For user guidelines only, not tested.)

Storage Temperature	65°C to +150°C
V _{DD} Voltage	0.5V to +2.5V
Output Voltage (max 2.5V)	–0.5V to V_{DD} +0.5V
Input Voltage (max 2.5V)	$-0.5V$ to $V_{DD}+0.5V$

Note: Stresses greater than those listed under MAXI-MUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

1.8V DC Characteristics (Over Operating Range: V_{DDA} , V_{DDB} , $V_{DDC} = 1.8V \pm 0.15V$, $T_A = -40^{\circ}$ to 85° C)

Parameters	Description	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Units
V _{DD}	Supply Voltage			1.65	1.8	1.95	
V _{IH}	Input HIGH Voltage	Logic HIGH level	Logic HIGH level			2.7	v
V _{IL}	Input LOW Voltage	Logic LOW level		-0.3		0.35*V _{DD}	v
II	Input Current ⁽³⁾	$V_{DD} = Max,$ $Vin = V_{DD}$ or GND	I pin			15	μA
V _{OH}	Output High Voltage	Van – Min Var – Var or Va	$I_{OH} = -2mA$	1.35			
VОН	Output High Voltage	$V_{DD} = Min., V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -8mA$	1.2			v
Vor	Output LOW Voltage	V_{DD} = Min., V_{IN} - V_{IH} or V_{IL}	$I_{OL} = 2mA$			0.1	
V _{OL}			$I_{OL} = 8mA$			0.2	

Notes:

1. For Max. or Min. conditions, use appropriate operating $V_{\mbox{DD}}$ and Ta values.

2. Typical values are at $V_{DD} = 1.8V$, +25°C ambient and maximum loading.

3. This parameter is determined by device characterization but is not production tested.

1.8V AC Characteristics (Over Operating Range: V_{DDA} , V_{DDB} , $V_{DDC} = 1.8V \pm 0.15V$, $T_A = -40^{\circ}$ to 85°C)

Parameters	Description		Test Conditions ⁽¹⁾	Min.	Тур	Max.	Units
F _{IN}	Input Frequency			0		200	MHz
$t_{PLH,} t_{PHL}^{(2)}$	Propagation Delay BU	JF_IN to CLKn		1.0	2.3	2.8	
,	Output to Output	Bank A (CLK0 - CLK4)		-60		60	
$t_{SK(O)}^{(3)}$	Skew between any two outputs of the	Bank C (CLK5 - CLK6)]	30		30]
011(0)	same device @ same	Bank B (CLK7 - CLK9)	$C_L = 3pF, R_L = 500-Ohm, 125 MHz$	-200		200	ps
$t_{SK(P)}^{(3)}$	Pulse Skew between c (t _{PHL} -t _{PLH}) of the sam	11	Outputs are measured $(a) V_{DD}/2$		100	200	
$t_{SK(T)}^{(3)(5)}$	Part to Part Skew betw of different parts on th	veen two identical outputs ne same board ⁽⁴⁾	@ V _{DD} /2			300	
t _{dc_in}	Duty Cycle In @ 1 ns	edge rate		45		55	%
t _{dc_out}	Duty Cycle Out			40		57.5	70
tj ⁽⁵⁾	Additive Jitter	Additive Jitter				50	ps
t _{R(0)}	Output Rise Time 20%	% - 80% CLKn			0.5	0.8	
t _{F(0)}	Output Fall Time 80%	5 - 20% CLKn			0.5	0.8	ns

1. See test circuit and waveforms.

2. Minimum limits are guaranteed but not tested on Propagation Delays.

3. Skew measured at worst case temperature (max. temp).

4. Identical conditions: loading, transitions, supply voltage, temperature, package type and speed grade.

5. Guaranteed by design

02/23/11

1.5V Absolute Maximum Ratings (Above which the useful life may

be impaired. For user guidelines only, not tested.)

Storage Temperature–65°C to +150°C	Note: S
Storage Temperature65°C to +150°C	MUM F
Storage Temperature65°C to +150°C V_{DD} Voltage0.5V to +3.6V	device. T
Output Voltage (max. $3.6V$) $-0.5V$ to $V_{DD}+0.5V$	of the de
	indicated
Input Voltage (max 3.6V) –0.5V to V _{DD} +0.5V	not impli for exten
	for exten

Note: Stresses greater than those listed under MAXI-MUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

1.5V DC Characteristics (Over Operating Range: V_{DDA} , V_{DDB} , $V_{DDC} = 1.5V \pm 0.1V$, $T_A = -40^{\circ}$ to 85°C)

Parameters	Description	Test Conditions ⁽¹⁾		Min.	Тур. ⁽²⁾	Max.	Units
V _{DD}	Supply Voltage			1.4	1.5	1.6	
V _{IH}	Input HIGH Voltage	Logic HIGH level		$0.65 \times V_{DD}$		V _{DD}	v
V _{IL}	Input LOW Voltage	Logic LOW level		-0.3		$0.35 \times V_{DD}$	v
II	Input Current	$V_{DD} = Max$, $Vin = V_{DD}$ or GND	I pin			15	μA
V	Output High Valtage	VWin VVorV	$I_{OH} = -2mA$	1.05			
V _{OH}	Output High Voltage	$V_{DD} = Min., V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -8mA$	1.75			v
V	Output I OW Voltage	VMin V V or V-	$I_{OL} = 2mA$			0.35	
V _{OL}	Output LOW Voltage	$V_{DD} = Min., V_{IN} - V_{IH} \text{ or } V_{IL}$	$I_{OL} = 8mA$			0.65	

Notes:

1. For Max. or Min. conditions, use appropriate operating range values.

2. Typical values are at $V_{DD} = 1.5V$, +25°C ambient and maximum loading.

1.5V AC Characteristics (Over Operating Range: V_{DDA} , V_{DDB} , $V_{DDC} = 1.5V \pm 0.1V$, $T_A = -40^{\circ}$ to 85°C)

Parameters	Description		Test Conditions ⁽¹⁾	Min.	Тур	Max.	Units
F _{IN}	Input Frequency			0		200	MHz
t _R /t _F	CLKn Rise/Fall Time		20% to 80%			1.0	ns
t _{PLH} , t _{PHL} ⁽²⁾	Propagation Delay BUF_I	put Frequency Kn Rise/Fall Time opagation Delay BUF_IN to CLKn tput to Output Skew tween any two outputs the same device @ ne transition Bank A (CLK0 - CLK4) Bank C (CLK5 - CLK6) Bank B (CLK7 - CLK9) Ise Skew between opposite transitions HL-tpLH) of the same output rt to Part Skew between two identical outputs of ferent parts on the same board ⁽⁴⁾ ty Cycle In @ Ins edge rate ty Cycle Out		2.0	2.8	3.5	ns
	Output to Output Skew	Bank A (CLK0 - CLK4)		-100		100	
$t_{SK(O)}^{(3)}$	between any two outputs of the same device ω	Bank C (CLK5 - CLK6)		-50		50	
	same transition	Bank B (CLK7 - CLK9)	$C_L = 3pF$,	-200		200	
$t_{SK(P)}^{(3)}$			$R_L = 500$ -Ohms, 125 MHz Outputs are		100	200	ps
$t_{SK(T)}^{(3)(5)}$			measured $\stackrel{1}{@} V_{DD}/2$			300	
t _{dc_in}	Duty Cycle In @ Ins edge	rate		45		55	%
$t_{dc_out}^{(5)}$	Duty Cycle Out			40		60	70
tj	Additive Jitter	Additive Jitter				50	ps
t _{R(0)}	Output Rise Time 20% - 8	0% CLKn			0.6	0.9	
t _{F(0)}	Output Fall Time 80% - 2	0% CLKn			0.6	0.9	ns

1. See test circuit and waveforms.

2. Minimum limits are guaranteed but not tested on Propagation Delays.

3. Skew measured at worst case temperature (max. temp).

4. Identical conditions: loading, transitions, supply voltage, temperature, package type and speed grade.

5. Guaranteed by design.

Downloaded from Arrow.com.

1.2V Absolute Maximum Ratings (Above which the useful life may

be impaired. For user guidelines only, not tested.)

Storage Temperature65°C to +150°C	Note: Stre
	device. This
	of the device
Output Voltage (max. 3.6V) $-0.5V$ to $V_{DD}+0.5V$	indicated in
Input Voltage (max 3.6V) $-0.5V$ to $V_{DD}+0.5V$	not implied. for extended

Note: Stresses greater than those listed under MAXI-MUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

1.2V DC Characteristics (Over Operating Range: V_{DDA} , V_{DDB} , $V_{DDC} = 1.2V \pm 0.1V$, $T_A = -40^{\circ}$ to 85°C)

Parameters	Description	Test Conditions ⁽	1)	Min.	Тур. ⁽²⁾	Max.	Units
V _{DD}	Supply Voltage			1.1	1.2	1.3	
V _{IH}	Input HIGH Voltage	Logic HIGH level Logic LOW level		$0.65 \times V_{DD}$		V _{DD} +0.3	v
V _{IL}	Input LOW Voltage			-0.3		$0.35 \times V_{DD}$	v
I_{I}	Input Current	$V_{DD} = Max$, $Vin = V_{DD}$ or GND	I pin			15	μA
V	Output High Voltage	VMin VVorV	$I_{OH} = -2mA$	1.05			
V _{OH}	Output High voltage	$V_{DD} = Min., V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -8mA$	1.75			v
Vor	Output LOW Voltage	$V_{DD} = Min., V_{IN} - V_{IH} \text{ or } V_{IL}$	$I_{OL} = 2mA$			0.35	l v
V _{OL}	Output LOW Voltage	v DD – IVIIII., v IN - v IH OI v IL	$I_{OL} = 8mA$			0.65	

Notes:

1. For Max. or Min. conditions, use appropriate operating range values.

2. Typical values are at $V_{DD} = 1.2V$, +25°C ambient and maximum loading.

1.2V AC Characteristics (Over Operating Range: V_{DDA} , V_{DDB} , $V_{DDC} = 1.2V \pm 0.1V$, $T_A = -40^{\circ}$ to 85°C)

Parameters	Description		Test Conditions ⁽¹⁾	Min.	Тур	Max.	Units	
F _{IN}	Input Frequency			0		150	MHz	
$t_{\rm PLH,} t_{\rm PHL}^{(2)}$	Propagation Delay BUF_IN to CLKn			4	5	6	ns	
t _{SK(O)} ⁽³⁾	Output to Output Skew between any two outputs of the same device @ same transition	Bank A (CLK0 - CLK4)	$C_L = 3pF, R_L =$ 500-Ohm, 125 MHz Outputs are measured	-150		150	ps	
		Bank C (CLK5 - CLK6)		-50		50		
		Bank B (CLK7 - CLK9)		-300		300		
$t_{SK(P)}^{(3)}$	Pulse Skew between opposite transitions (t _{PHL} -t _{PLH}) of the same output		@ V _{DD} /2		200	300		
$t_{SK(T)}^{(3)(5)}$	Part to Part Skew between two identical outputs of different parts on the same board ⁽⁴⁾					300		
t _{DC_IN}	Duty Cycle In @ 1ns edge rate			45		55	%	
t _{DC_OUT}	Duty Cycle Out			40		60	/ %	
$t_j^{(5)}$	Additive Jitter					50	ps	
t _{R(0)}	Output Rise Time 20% - 80% CLKn				0.9	1		
t _{F(0)}	Output Fall Time 80% - 20% CLKn				0.9	1	ns	

1. See test circuit and waveforms.

2. Minimum limits are guaranteed but not tested on Propagation Delays.

3. Skew measured at worst case temperature (max. temp).

4. Identical conditions: loading, transitions, supply voltage, temperature, package type and speed grade.

5. Guaranteed by design.

Downloaded from Arrow.com.

Power Supply Characteristics

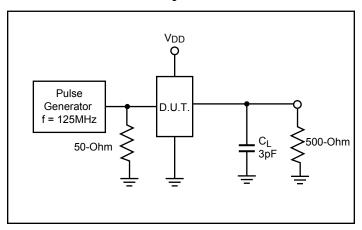
Parameters	Description	Test Conditions ⁽¹⁾			Typ. ⁽²⁾	Max.	Units
Iddq	Quiescent Power Supply Current	$V_{DDA} = V_{DDB} =$ $V_{DDC} = 2.7V$	No Load. F _{IN} = 40MHz (Bank A, Bank B, Bank C included)		16		
		$V_{DDA} = V_{DDB} =$ $V_{DDC} = 1.95V$			12		mA
		$V_{DDA} = V_{DDB} =$ $V_{DDC} = 1.6V$			8		
		$V_{DDA} = V_{DDB} =$ $V_{DDC} = 1.2V$			8		
I _{OS}	Short Circuit Current	$V_{DDA} = V_{DDB} = V_{DDC}$	2.7V 1.95V 1.6V 1.2V				mA

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics.

2. Typical values are at V_{DD} = 1.2V, 1.5V, 1.8V or 2.5V, and +25°C ambient.

3. Per TTL driven input ($V_{IN} = V_{DD} - 0.6V$); all other inputs at V_{DD} or GND.

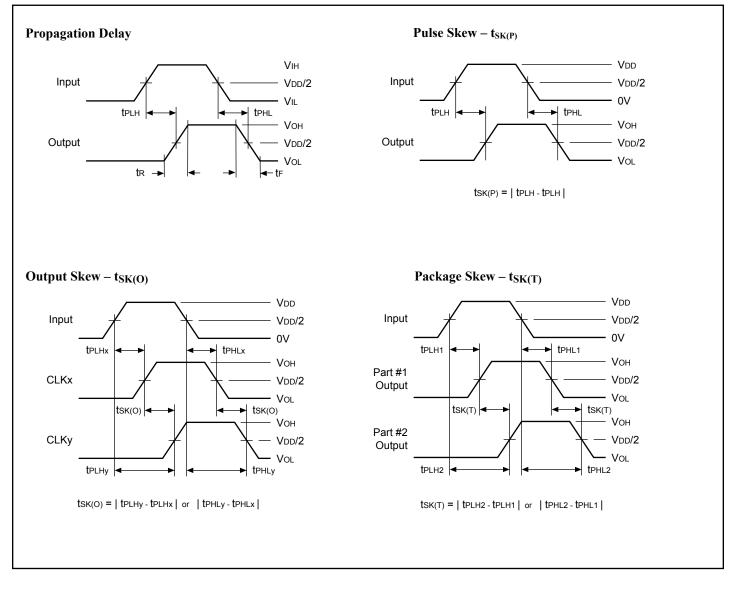

Capacitance ($T_A = 25^{\circ}C$, f = 1 MHz)

Parameters ⁽¹⁾	Description	Test Conditions	Тур	Max.	Units
C _{IN}	Input Capacitance	$V_{IN} = 0V$	3.0	4	тĒ
C _{OUT}	Output Capacitance	$V_{OUT} = 0V$	—	6	pF

Note:

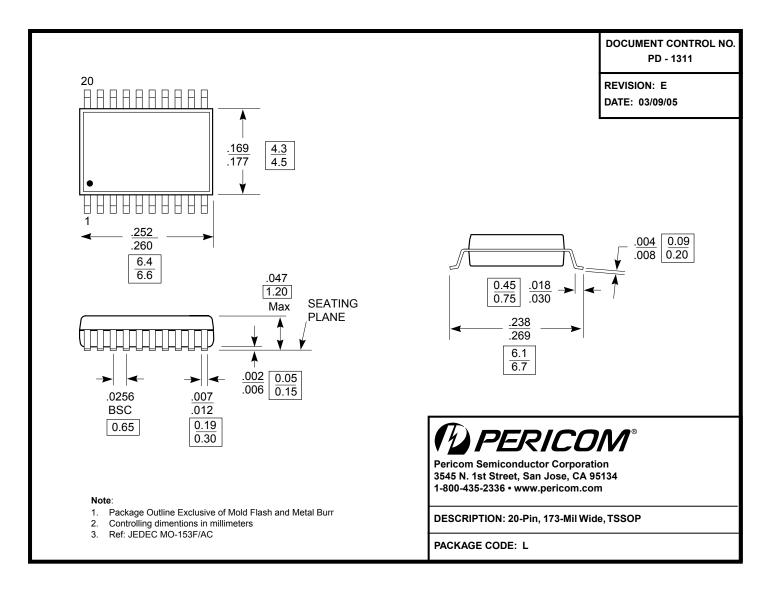
1. This parameter is determined by device characterization but is not production tested.

Test Circuits for All Outputs

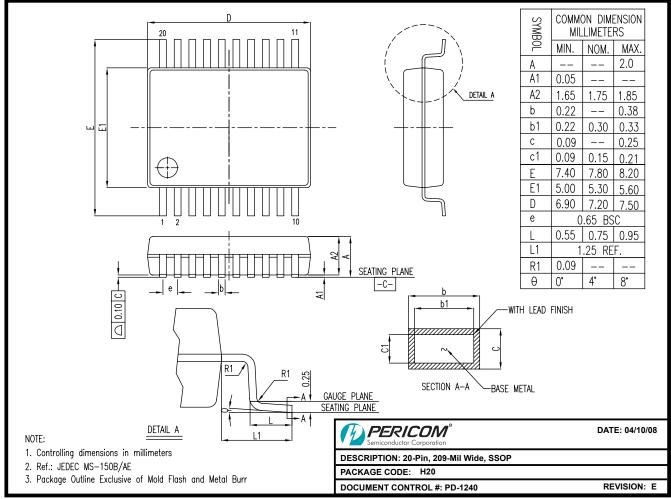


Definitions:

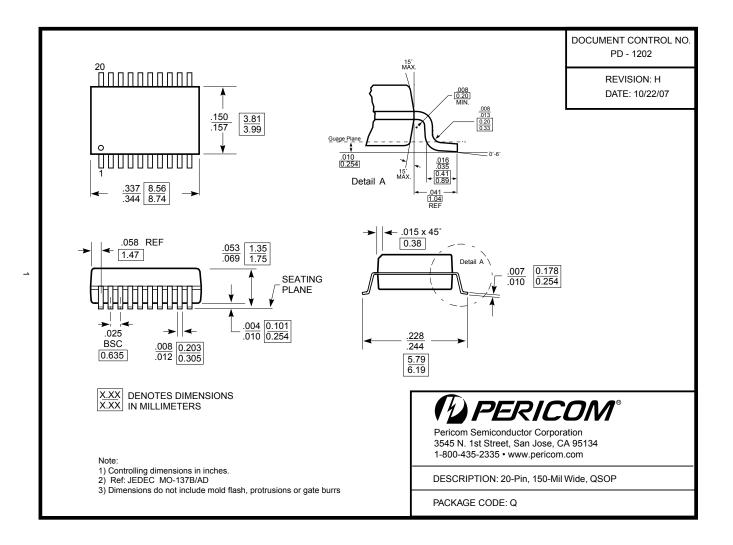
 C_L = Load capacitance: includes jig and probe capacitance.



Switching Waveforms


7

8


PERICOM®

9

08-0140

Ordering Information⁽¹⁻³⁾

Ordering Code	Package Code	Package Type
PI6C10810LE	L	Pb-free & Green, 20-pin 173-mil wide TSSOP
PI6C10810HE	Н	Pb-free & Green, 20-pin 209-mil wide SSOP
PI6C10810QE	Q	Pb-free & Green, 20-pin 150-mil wide QSOP

Notes:

Downloaded from Arrow.com.

1. Thermal Characteristics can be found on the web at www.pericom.com/packaging/

2. E = Lead-free and Green

3. Adding an X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com