

STF6N65M2, STP6N65M2, STU6N65M2

N-channel 650 V, 1.2 Ω typ., 4 A MDmesh™ M2 Power MOSFETs in TO-220FP, TO-220 and IPAK packages

Datasheet - preliminary data

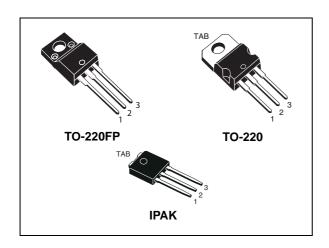
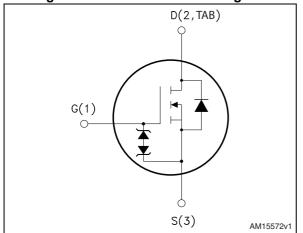



Figure 1. Internal schematic diagram

Features

Order codes	V _{DS}	R _{DS(on)} max	I _D
STF6N65M2			
STP6N65M2	650 V	1.35 Ω	4 A
STU6N65M2			

- Extremely low gate charge
- Excellent output capacitance (C_{OSS}) profile
- 100% avalanche tested
- Zener-protected

Applications

· Switching applications

Description

These devices are N-channel Power MOSFETs developed using MDmesh™ M2 technology. Thanks to their strip layout and improved vertical structure, the devices exhibit low on-resistance and optimized switching characteristics, rendering them suitable for the most demanding high efficiency converters.

Table 1. Device summary

Order codes	Marking	Package	Packaging
STF6N65M2		TO-220FP	
STP6N65M2	6N65M2	TO-220	Tube
STU6N65M2		IPAK	

August 2014 DocID026776 Rev 1 1/18

Contents

1	Elect	trical ratings3
2	Elect	trical characteristics4
	2.1	Electrical characteristics (curves)
3	Test	circuits9
4	Pack	age mechanical data
	4.1	TO-220FP, STF6N65M2
	4.2	TO-220, STP6N65M2
	4.3	IPAK, STU6N65M2
5	Revi	sion history

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Va	Unit	
Symbol	Farameter	TO-220FP	TO-220, IPAK	Onn
V _{GS}	Gate-source voltage	±	25	V
I _D	Drain current (continuous) at T _C = 25 °C	4 (1)	4	Α
I _D	Drain current (continuous) at T _C = 100 °C	2.5 ⁽¹⁾ 2.5		Α
I _{DM} ⁽²⁾	Drain current (pulsed)	16 ⁽¹⁾ 16		Α
P _{TOT}	Total dissipation at T _C = 25 °C	20	60	W
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t=1 s; T _C =25 °C)	2500		V
dv/dt ⁽³⁾	Peak diode recovery voltage slope	1	5	Mas
dv/dt ⁽⁴⁾	MOSFET dv/dt ruggedness	50		V/ns
T _{stg}	Storage temperature	- 55 to 150		°C
Tj	Max. operating junction temperature	- 55 (.0 150	

- 1. Limited by maximum junction temperature.
- 2. Pulse width limited by safe operating area.
- 3. $I_{SD} \le 4$ A, di/dt ≤ 400 A/ μ s; $V_{DS peak} < V_{(BR)DSS}$, V_{DD} =400 V
- $4. \quad V_{DS} \leq 520 V$

Table 3. Thermal data

Symbol	Parameter		Unit		
Symbol	raiametei	TO-220FP	TO-220	IPAK	
R _{thj-case}	Thermal resistance junction-case max	6.25 2.08)8	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	62.5		100	°C/W

Table 4. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T _{jmax})	0.5	Α
E _{AS}	Single pulse avalanche energy (starting T _j =25°C, I _D = I _{AR} ; V _{DD} =50)	100	mJ

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 5. On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0, I_D = 1 \text{ mA}$	650			٧
	Zero gate voltage drain current	$V_{GS} = 0, V_{DS} = 650 \text{ V}$			1	μΑ
I _{DSS}		$V_{GS} = 0$, $V_{DS} = 650$ V, $T_C = 125$ °C			100	μΑ
I _{GSS}	Gate-body leakage current	$V_{DS} = 0, V_{GS} = \pm 25 \text{ V}$			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 2 A		1.2	1.35	Ω

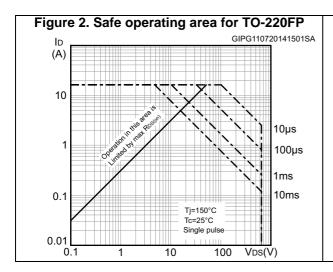
Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	226	-	pF
C _{oss}	Output capacitance	$V_{GS} = 0, V_{DS} = 100 \text{ V},$	-	12.8	-	pF
C _{rss}	Reverse transfer capacitance	f = 1 MHz	-	0.65	-	pF
C _{oss eq.} ⁽¹⁾	Equivalent output capacitance	$V_{GS} = 0$, $V_{DS} = 0$ to 520 V	-	114	-	pF
R_{G}	Intrinsic gate resistance	f = 1 MHz open drain	-	6.5	-	Ω
Qg	Total gate charge	V _{DD} = 520 V, I _D = 4 A,	-	9.8	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 10 V	-	1.7	-	nC
Q_{gd}	Gate-drain charge	(see Figure 8)	-	4	-	nC

^{1.} $C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 7. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	19	-	ns
t _r	Rise time	$V_{DD} = 325 \text{ V}, I_D = 2 \text{ A},$	-	7	-	ns
t _{d(off)}	Turn-off delay time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see <i>Figure 15</i> and <i>Figure 20</i>)	-	6.5	-	ns
t _f	Fall time		-	20	-	ns


Table 8. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		4	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		16	Α
V _{SD} (2)	Forward on voltage	I _{SD} = 4 A, V _{GS} = 0	-		1.6	V
t _{rr}	Reverse recovery time		-	260		ns
Q _{rr}	Reverse recovery charge	I _{SD} = 4 A, di/dt = 100 A/μs V _{DD} = 60 V (see <i>Figure 17</i>)	-	1.2		μC
I _{RRM}	Reverse recovery current	God rigano rry	-	9.2		Α
t _{rr}	Reverse recovery time	I _{SD} = 4 A, di/dt = 100 A/μs	-	400		ns
Q _{rr}	Reverse recovery charge	$V_{DD} = 60 \text{ V}, T_j = 150 ^{\circ}\text{C}$	-	1.84		μC
I _{RRM}	Reverse recovery current	(see Figure 17)	-	9.1		Α

^{1.} Pulse width limited by safe operating area.

^{2.} Pulsed: pulse duration = $300 \mu s$, duty cycle 1.5%

2.1 Electrical characteristics (curves)

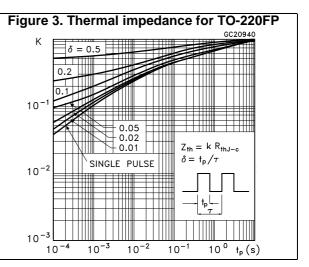
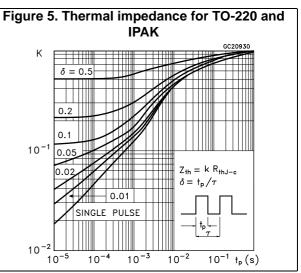
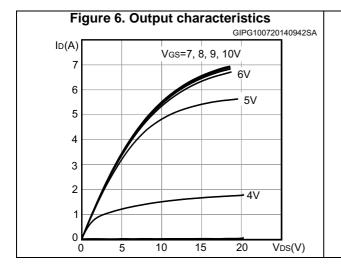




Figure 4. Safe operating area for TO-220 and **IPAK** GIPG110720141521SA ΙD (A) 10 10µs 100µs 1ms 10ms 0.1 Tj=150°C Tc=25°C Single pulse 0.01 10 100 V_Ds(V)

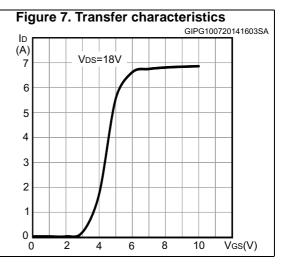
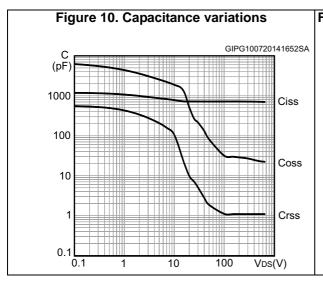


Figure 8. Gate charge vs gate-source voltage GIPG100720141638SA VDS (V) (V) Vos VDD=520V 12 ID=4A 500 450 10 400 350 8 300 6 250 200 4 150 100 2 50 0 Q_g(nC) 2 6 8 10

Figure 9. Static drain-source on-resistance

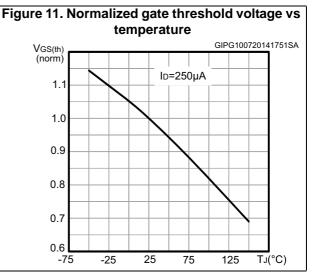
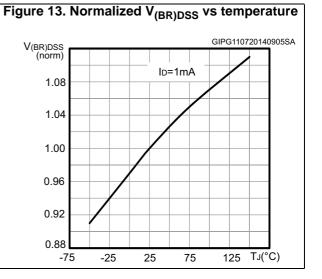
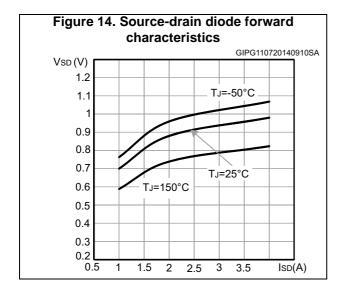

RDS(on) (Ω) VGS=10V

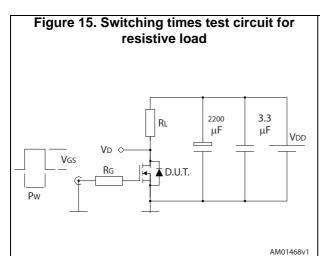
1.26

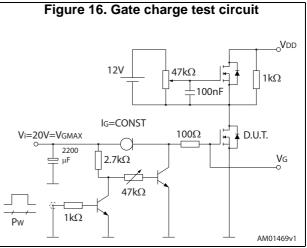
1.18

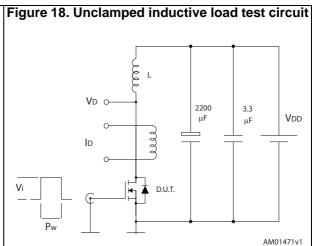
1.14

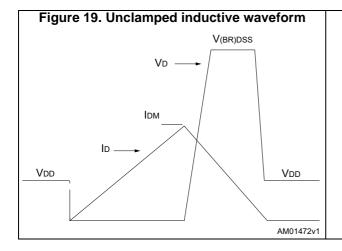
0 1 2 3 4 ID(A)

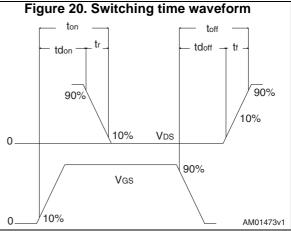





Figure 12. Normalized on-resistance vs temperature GIPG110720140859SA RDS(on) (norm) Vgs=10V 2.2 1.8 1.4 0.6 0.2 -75 -25 25 75 125 T_J(°C)






47/


3 Test circuits

57/

DocID026776 Rev 1

9/18

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

57

4.1 TO-220FP, STF6N65M2

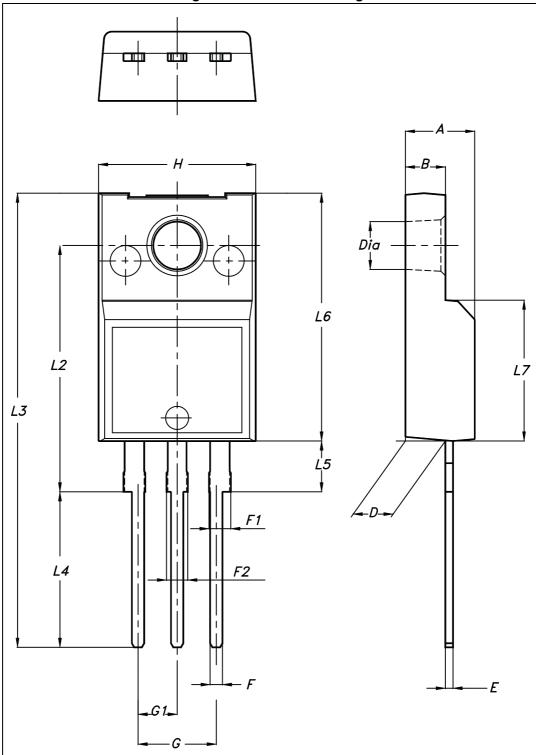
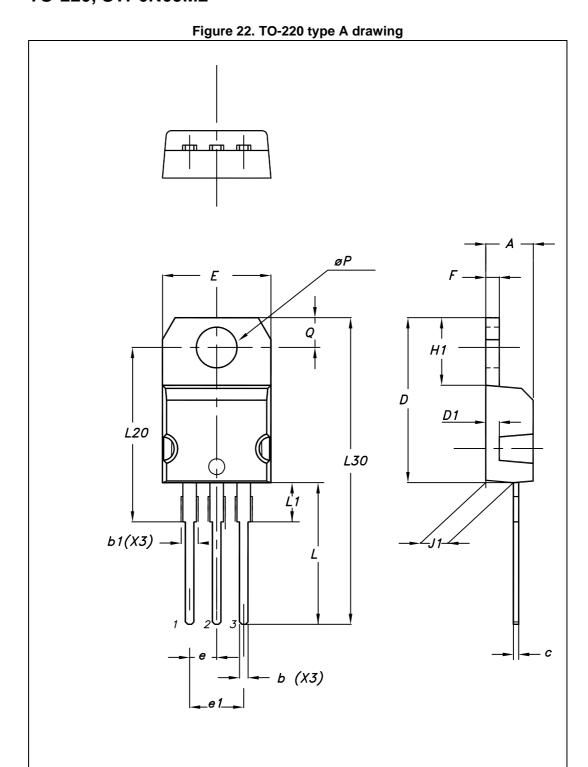


Figure 21. TO-220FP drawing


5/

7012510_Rev_K_B

Table 9. TO-220FP mechanical data

mm				
Dim.		mm	I	
	Min.	Тур.	Max.	
А	4.4		4.6	
В	2.5		2.7	
D	2.5		2.75	
E	0.45		0.7	
F	0.75		1	
F1	1.15		1.70	
F2	1.15		1.70	
G	4.95		5.2	
G1	2.4		2.7	
Н	10		10.4	
L2		16		
L3	28.6		30.6	
L4	9.8		10.6	
L5	2.9		3.6	
L6	15.9		16.4	
L7	9		9.3	
Ø	3		3.2	

4.2 TO-220, STP6N65M2

57/

0015988_typeA_Rev_T

Table 10. TO-220 type A mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
D1		1.27	
Е	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØP	3.75		3.85
Q	2.65		2.95

47/

IPAK, STU6N65M2 4.3

Figure 23. IPAK (TO-251) drawing E-L2 , L1 F *b2 (3x)* b (3x) -*B5*

0068771_K

Table 11. IPAK (TO-251) mechanical data

	mm.		
DIM	min.	typ.	max.
A	2.20		2.40
A1	0.90		1.10
b	0.64		0.90
b2			0.95
b4	5.20		5.40
B5		0.30	
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
E	6.40		6.60
е		2.28	
e1	4.40		4.60
Н		16.10	
L	9.00		9.40
L1	0.80		1.20
L2		0.80	1.00
V1		10°	

DocID026776 Rev 1

16/18

5 Revision history

Table 12. Document revision history

Date	Revision	Changes
04-Aug-2014	1	First release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics - All rights reserved

57