Silicon Switching Diode

- For high-speed switching applications
- Series pair configuration
- BAV99S / U: For orientation in reel see package information below

BAV99 BAV99S
BAV99T BAV99U
BAV99W

Type	Package	Configuration	Marking
BAV99	SOT23	series	A7s
BAV99S	SOT363	dual series	A7s
BAV99T	SC75	series	A7
BAV99U	SC74	dual series	A7s
BAV99W	SOT323	series	A7s

Maximum Ratings at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Value	Unit
Diode reverse voltage	V_{R}	80	V
Peak reverse voltage	V_{RM}	85	
Forward current	I_{F}	200	mA
Non-repetitive peak surge forward current	I_{FSM}		A
$t=1 \mu \mathrm{~s}$		4.5	
$t=1 \mathrm{~ms}$		1	
$t=1 \mathrm{~s}$, single		0.5	
$t=1 \mathrm{~s}$, double	$P_{\text {tot }}$	0.75	
Total power dissipation		330	mW
BAV99, $T_{\mathrm{S}} \leq 28^{\circ} \mathrm{C}$		250	
BAV99S, $T_{\mathrm{S}} \leq 85^{\circ} \mathrm{C}$	250		
BAV99T, $T_{\mathrm{S}} \leq 104^{\circ} \mathrm{C}$		250	
BAV99U, $T_{\mathrm{S}} \leq 113^{\circ} \mathrm{C}$		250	
BAV99W, $T_{\mathrm{S}} \leq 10^{\circ} \mathrm{C}$		150	${ }^{\circ} \mathrm{C}$
Junction temperature	T_{j}	$-65 \ldots 150$	
Storage temperature	$T_{\text {Stg }}$		

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point1 ${ }^{1}$)	$R_{\text {thJS }}$		K/W
BAV99		≤ 360	
BAV99S		≤ 260	
BAV99T		≤ 185	
BAV99U		≤ 150	
BAV99W		≤ 160	

${ }^{1}$ For calculation of $R_{\text {thJA }}$ please refer to Application Note Thermal Resistance

BAV99...

Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values		Unit	
		min.	typ.		
DC Characteristics					

Breakdown voltage $I_{(\mathrm{BR})}=100 \mu \mathrm{~A}$	$V_{(\mathrm{BR})}$	85	-	-	V
Reverse current	I_{R}				$\mu \mathrm{A}$
$V_{\mathrm{R}}=70 \mathrm{~V}$		-	-	0.15	
$V_{\mathrm{R}}=25 \mathrm{~V}, T_{\mathrm{A}}=150^{\circ} \mathrm{C}$		-	-	30	
$V_{\mathrm{R}}=70 \mathrm{~V}, T_{\mathrm{A}}=150^{\circ} \mathrm{C}$		-	-	50	
Forward voltage					
$I_{\mathrm{F}}=1 \mathrm{~mA}$		-	-	715	
$I_{\mathrm{F}}=10 \mathrm{~mA}$		-	-	1000	
$I_{\mathrm{F}}=50 \mathrm{~mA}$		-	-	1200	
$I_{\mathrm{F}}=100 \mathrm{~mA}$	-	-	1250		
$I_{\mathrm{F}}=150 \mathrm{~mA}$					

Electrical Characteristics at $T_{A}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	

AC Characteristics

Diode capacitance $V_{\mathrm{R}}=0 \mathrm{~V}, f=1 \mathrm{MHz}$	C_{T}	-	-	1.5	pF
Reverse recovery time					
$I_{\mathrm{F}}=10 \mathrm{~mA}, I_{\mathrm{R}}=10 \mathrm{~mA}$, measured at $I_{\mathrm{R}}=1 \mathrm{~mA}$,	t_{rr}	-	-	4	ns
$R_{\mathrm{L}}=100 \Omega$					

Test circuit for reverse recovery time

Pulse generator: $t_{\mathrm{p}}=100 \mathrm{~ns}, D=0.05$,

$$
t_{\mathrm{r}}=0.6 \mathrm{~ns}, R_{\mathrm{i}}=50 \Omega
$$

Oscillograph: $R=50, t_{r}=0.35 \mathrm{~ns}$

$$
C \leq 1 \mathrm{pF}
$$

BAV99...

Reverse current $I_{\mathrm{R}}=f\left(T_{\mathrm{A}}\right)$
$V_{\mathrm{R}}=$ Parameter

Forward current $I_{F}=f\left(V_{F}\right)$
$T_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Forward Voltage $V_{\mathrm{F}}=f\left(T_{\mathrm{A}}\right)$
$I_{F}=$ Parameter

Forward current $I_{F}=f\left(T_{S}\right)$
BAV99

BAV99...

Forward current $l_{\mathrm{F}}=f\left(T_{\mathrm{S}}\right)$
BAV99S

Forward current $I_{F}=f\left(T_{S}\right)$
BAV99U

Forward current $I_{F}=f\left(T_{\mathrm{S}}\right)$ BAV99T

Forward current $I_{F}=f\left(T_{S}\right)$
BAV99W

Permissible Puls Load $R_{\text {thJS }}=f\left(t_{\mathrm{p}}\right)$ BAV99

Permissible Puls Load $R_{\text {thJS }}=f\left(t_{\mathrm{p}}\right)$
BAV99S

Permissible Pulse Load
$I_{\text {Fmax }} / I_{\text {FDC }}=f\left(t_{\mathrm{p}}\right)$
BAV99

Permissible Pulse Load

$I_{\text {Fmax }} / I_{\text {FDC }}=f\left(t_{\mathrm{p}}\right)$
BAV99S

BAV99...

Permissible Puls Load $R_{\text {thJS }}=f\left(t_{\mathrm{p}}\right)$ BAV99T

Permissible Puls Load $R_{\text {thJS }}=f\left(t_{\mathrm{p}}\right)$
BAV99U

Permissible Pulse Load
$I_{\text {Fmax }} / I_{\text {FDC }}=f\left(t_{\mathrm{p}}\right)$
BAV99T

Permissible Pulse Load

$I_{\text {Fmax }} / I_{\text {FDC }}=f\left(t_{\mathrm{p}}\right)$
BAV99U

Permissible Puls Load $R_{\text {thJS }}=f\left(t_{\mathrm{p}}\right)$ BAV99W

Permissible Pulse Load
$I_{\text {Fmax }} / I_{\text {FDC }}=f\left(t_{\mathrm{p}}\right)$

Package Outline

Foot Print

Marking Layout (Example)

Small variations in positioning of
Date code, Type code and Manufacture are possible.

Standard Packing

Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel
For symmetric types no defined Pin 1 orientation in reel.

Package Outline

Foot Print

Marking Layout

Example

Standard Packing

Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel

BAV99...

Date Code marking for discrete packages with one digit (SCD80, SC79, SC751) CES-Code

Month	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
01	a	p	A	P	a	p	A	P	a	p	A	P
02	b	q	B	Q	b	q	B	Q	b	q	B	Q
03	c	r	C	R	c	r	C	R	c	r	C	R
04	d	S	D	S	d	S	D	S	d	S	D	S
05	e	t	E	T	e	t	E	T	e	t	E	T
06	f	u	F	U	f	u	F	U	f	u	F	U
07	g	v	G	V	g	v	G	V	g	v	G	V
08	h	x	H	X	h	x	H	X	h	x	H	X
09	j	y	J	Y	j	y	J	Y	j	y	J	Y
10	k	z	K	Z	k	z	K	Z	k	z	K	Z
11	I	2	L	4	I	2	L	4	1	2	L	4
12	n	3	N	5	n	3	N	5	n	3	N	5

1) New Marking Layout for SC75, implemented at October 2005.

Package Outline

1) Lead width can be 0.6 max. in dambar area

Foot Print

Marking Layout

Standard Packing

Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel

Package Outline

Foot Print

Marking Layout

Standard Packing
Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel

Package Outline

Foot Print

Marking Layout (Example)

Small variations in positioning of
Date code, Type code and Manufacture are possible.

Standard Packing

Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel
For symmetric types no defined Pin 1 orientation in reel.

Published by Infineon Technologies AG, 81726 München
© Infineon Technologies AG 2006.

All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.Infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

