reescale Semiconductor

Technical Data

RF Power Field Effect Transistors

N-Channel Enhancement-Mode Lateral MOSFETs

Designed for CDMA and multicarrier base station applications with frequencies from 1805 to 1880 MHz. Can be used in Class AB and Class C for all typical cellular base station modulation formats.

Typical Doherty Single-Carrier W-CDMA Performance: V_{DD} = 30 Volts, $I_{DQA} = 800 \text{ mA}, V_{GSB} = 1.3 \text{ V}, P_{out} = 72 \text{ Watts Avg., IQ Magnitude Clipping, Channel Bandwidth = 3.84 MHz, Input Signal PAR = 9.9 dB @ 0.01%$ Probability on CCDF.

Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)
1805 MHz	15.9	44.8	6.9	-31.7
1840 MHz	16.1	43.4	7.0	-31.7
1880 MHz	16.0	43.7	6.7	-32.2

- Capable of Handling 10:1 VSWR, @ 32 Vdc, 1840 MHz, 280 Watts CW Output Power (2 dB Input Overdrive from Rated Pout)
- Typical P_{out} @ 3 dB Compression Point \approx 280 Watts CW

Features

- Production Tested in a Symmetrical Doherty Configuration
- 100% PAR Tested for Guaranteed Output Power Capability
- Characterized with Large-Signal Load-Pull Parameters and Common Source S-Parameters
- Internally Matched for Ease of Use
- Integrated ESD Protection
- Greater Negative Gate-Source Voltage Range for Improved Class C Operation
- Designed for Digital Predistortion Error Correction Systems
- In Tape and Reel. R6 Suffix = 150 Units per 56 mm, 13 inch Reel.

Table 1. Maximum Ratings			
Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +65	Vdc
Gate-Source Voltage	V _{GS}	-6.0, +10	Vdc
Operating Voltage	V _{DD}	32, +0	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature	T _C	150	°C
Operating Junction Temperature (1,2)	TJ	225	°C
CW Operation @ T _C = 25°C Derate above 25°C	CW	446 4.5	W W/°C

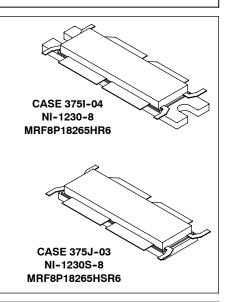
Table 1 Maximum Dating

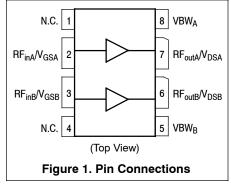
Table 2. Thermal Characteristics

Characteristic	Symbol	Value ^(2,3)	Unit	
Thermal Resistance, Junction to Case	$R_{\theta JC}$		°C/W	1
Case Temperature 74°C, 72.5 W CW, 30 Vdc, I _{DQA} = 800 mA, V _{GSB} = 1.3 V, 1880 MHz		0.27		
Case Temperature 90°C, 260 W CW ⁽⁴⁾ , 30 Vdc, I_{DQA} = 800 mA, V_{GSB} = 1.3 V, 1880 MHz		0.25		

1. Continuous use at maximum temperature will affect MTTF.

2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.


Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select 3. Documentation/Application Notes - AN1955.


4. Exceeds recommended operating conditions. See CW operation data in Maximum Ratings table.

Document Number: MRF8P18265H Rev. 1, 2/2012

MRF8P18265HR6 MRF8P18265HSR6

1805-1880 MHz, 72 W AVG., 30 V SINGLE W-CDMA LATERAL N-CHANNEL **RF POWER MOSFETs**

Table 3. ESD Protection Characteristics

Test Methodology		Class				
Human Body Model (per JESD22-A114)		2				
Machine Model (per EIA/JESD22-A115)			A			
Charge Device Model (per JESD22-C101)			١٧	/		
Table 4. Electrical Characteristics (T _A = 25°C unless otherwise not	ed)					
Characteristic	Symbol	Min	Тур	Max	Unit	
Off Characteristics ⁽¹⁾						
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}		_	10	μAdc	
Zero Gate Voltage Drain Leakage Current (V _{DS} = 30 Vdc, V _{GS} = 0 Vdc)	I _{DSS}		_	1	μAdc	
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}		-	1	μAdc	
On Characteristics ⁽¹⁾						
Gate Threshold Voltage (V_{DS} = 10 Vdc, I_D = 200 μ Adc)	V _{GS(th)}	1.1	1.9	2.6	Vdc	
Gate Quiescent Voltage (V _{DD} = 30 Vdc, I _{DA} = 800 mAdc, Measured in Functional Test)	V _{GS(Q)}	1.8	2.6	3.3	Vdc	
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 2 Adc)	V _{DS(on)}	0.1	0.15	0.3	Vdc	
			1	1	·	

Functional Tests ^(2,3) (In Freescale Doherty Test Fixture, 50 ohm system) $V_{DD} = 30 \text{ Vdc}$, $I_{DQA} = 800 \text{ mA}$, $V_{GSB} = 1.3 \text{ V}$, $P_{out} = 72 \text{ W Avg.}$, f = 1880 MHz, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset.

Power Gain	G _{ps}	13.8	16.0	17.0	dB
Drain Efficiency	η _D	41.0	43.7		%
Output Peak-to-Average Ratio @ 0.01% Probability on CCDF	PAR	6.0	6.7		dB
Adjacent Channel Power Ratio	ACPR	_	-32.2	-28.0	dBc

Typical Broadband Performance ⁽³⁾ (In Freescale Doherty Test Fixture, 50 ohm system) $V_{DD} = 30$ Vdc, $I_{DQA} = 800$ mA, $V_{GSB} = 1.3$ V, $P_{out} = 72$ W Avg., Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset.

Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)
1805 MHz	15.9	44.8	6.9	-31.7
1840 MHz	16.1	43.4	7.0	-31.7
1880 MHz	16.0	43.7	6.7	-32.2

1. Each side of device measured separately.

2. Part internally matched both on input and output.

3. Measurement made with device in a symmetrical Doherty configuration.

(continued)

Table 4. Electrical Characteristics (T_A = $25^{\circ}C$ unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
Typical Performance ⁽¹⁾ (In Freescale Doherty Test Fixture, 50 ohm system Bandwidth	ו) V _{DD} = 30 Vo	dc, I _{DQA} = 80	00 mA, V _{GSB}	= 1.3 V, 1805	-1880 MHz

Bandwidth					
Pout @ 1 dB Compression Point, CW	P1dB	_	224	—	W
Pout @ 3 dB Compression Point, CW	P3dB	—	280	_	W
IMD Symmetry @ 17 W PEP, P _{out} where IMD Third Order Intermodulation ≌ 30 dBc (Delta IMD Third Order Intermodulation between Upper and Lower Sidebands > 2 dB)	IMD _{sym}	_	72	_	MHz
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)	VBW _{res}	_	88		MHz
Gain Flatness in 75 MHz Bandwidth @ P _{out} = 72 W Avg.	G _F	—	0.4	_	dB
Gain Variation over Temperature (-30°C to +85°C)	ΔG	_	0.01	_	dB/°C
Output Power Variation over Temperature (-30°C to +85°C) ⁽²⁾	∆P1dB	—	0.005	—	dB/°C

1. Measurement made with device in a symmetrical Doherty configuration.

2. Exceeds recommended operating conditions. See CW operation data in Maximum Ratings table.

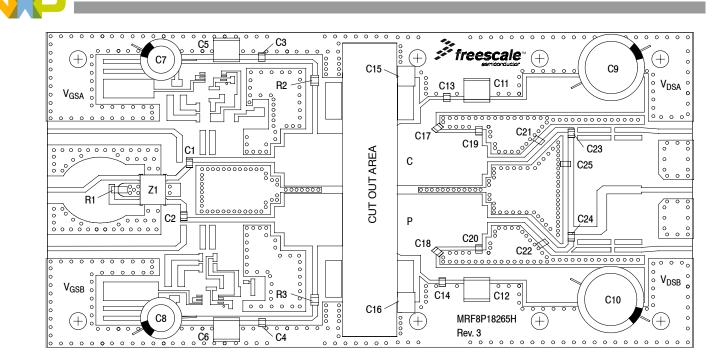
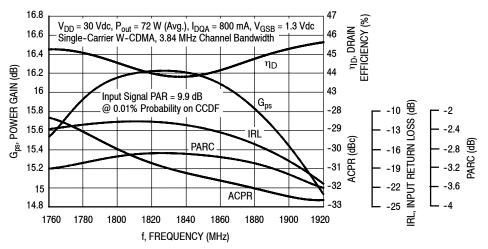
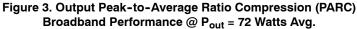
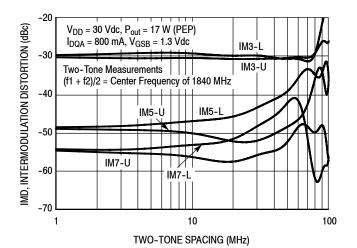


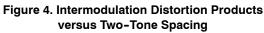
Figure 2. MRF8P18265HR6(HSR6) Test Circuit Component Layout

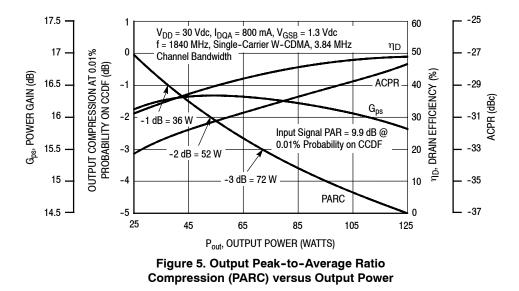
Part	Description	Part Number	Manufacturer
C1, C2, C3, C4, C13, C14, C23, C24	15 pF Chip Capacitors	ATC600F150JT250XT	ATC
C5, C6, C11, C12	10 μF, 50 V Chip Capacitors	GRM55DR61H106KA88L	Murata
C7, C8	100 μF, 50 V Chip Capacitors	MCGPR50V107M8X11	Multicomp
C9, C10	470 μF, 63 V Chip Capacitors	MCGPR63V477M13X26-RH	Multicomp
C15, C16	6.8 μF Chip Capacitors	C4532X7RIH685KT	TDK
C17, C18	2.2 pF Chip Capacitors	ATC600F2R2BT250XT	ATC
C19, C20	0.8 pF Chip Capacitors	ATC600F0R8BT250XT	ATC
C21, C22	0.3 pF Chip Capacitors	ATC600F0R3BT250XT	ATC
C25	0.1 pF Chip Capacitor	ATC600F0R1BT250XT	ATC
R1	50 Ω, 4 W Chip Resistor	CW12010T0050GBK	ATC
R2, R3	10 Ω, 1/4 W Chip Resistors	CRCW120610R0FKEA	Vishay
Z1	1900 MHz Band 90°, 3 dB Chip Hybrid Coupler	GCS351-HYB1900	Soshin
PCB	0.020″, ε _r = 3.5	RF-35	Taconic

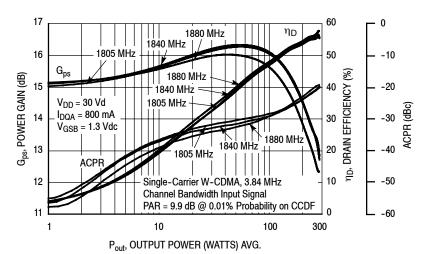

Table 5. MRF8P18265HR6(HSR6) Test Circuit Component Designations and Values

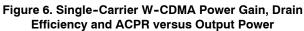

MRF8P18265HR6 MRF8P18265HSR6


4




TYPICAL CHARACTERISTICS





TYPICAL CHARACTERISTICS

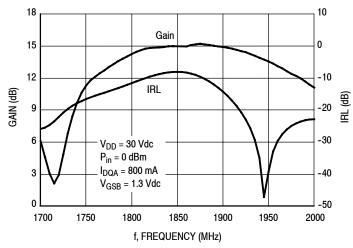
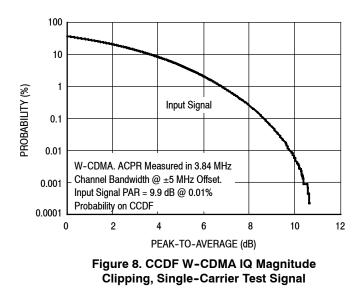



Figure 7. Broadband Frequency Response

W-CDMA TEST SIGNAL

MRF8P18265HR6 MRF8P18265HSR6

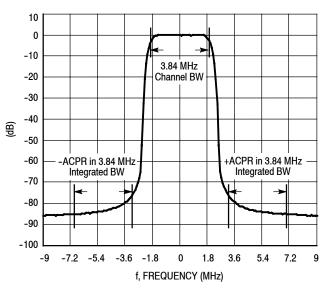


Figure 9. Single-Carrier W-CDMA Spectrum

V _{DD} = 30 Vdc, I _{DQA} = 800 mA								
f	f Max P _{out} ⁽¹⁾		Z _{source}	Z _{load}				
MHz	Watts		Q	Ω				
1805	195	52.9	2.38 - j6.43	1.31 - j2.51				
1840	195	52.9	3.70 - j7.13	1.21 - j2.50				
1880	190	52.8	4.23 - j7.74	1.24 - j2.51				

(1) Maximum output power measurement reflects pulsed 1 dB gain compression.

 Z_{source} = Test circuit impedance as measured from gate contact to ground.

Z_{load} = Test circuit impedance as measured from drain contact to ground.

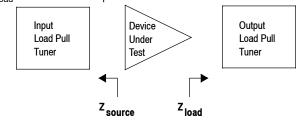
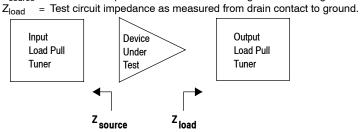
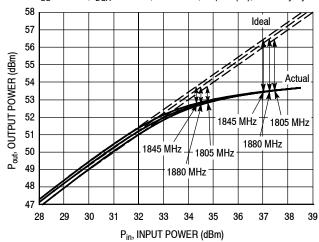


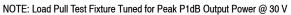
Figure 10. Carrier Side Load Pull Performance — Maximum P1dB Tuning

f MHz	Max Eff. ⁽¹⁾ %	Z _{source} Ω	Z _{load} Ω
1805	69.3	2.38 - j6.43	3.10 - j1.22
1840	68.9	3.70 - j7.13	2.59 - j1.37
1880	68.3	4.23 - j7.74	2.47 - j1.17

Vnn	= 30	Vdc,		=	800	mΑ
v ()()	- 00	vuc,	UUJA	_	000	шл

(1) Maximum output power measurement reflects pulsed 1 dB gain compression. Z_{source} = Test circuit impedance as measured from gate contact to ground.


Figure 11. Carrier Side Load Pull Performance — Maximum Efficiency Tuning

ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS

 V_{DD} = 30 Vdc, I_{DQA} = 800 mA, Pulsed CW, 10 $\mu sec(on),$ 10% Duty Cycle

f	P1	dB	P3dB		
(MHz)	Watts	dBm	Watts	dBm	
1805	197	52.9	226	53.5	
1845	194	52.9	223	53.5	
1880	190	52.8	226	53.5	

Test Im	pedances	per	Com	pression	I evel

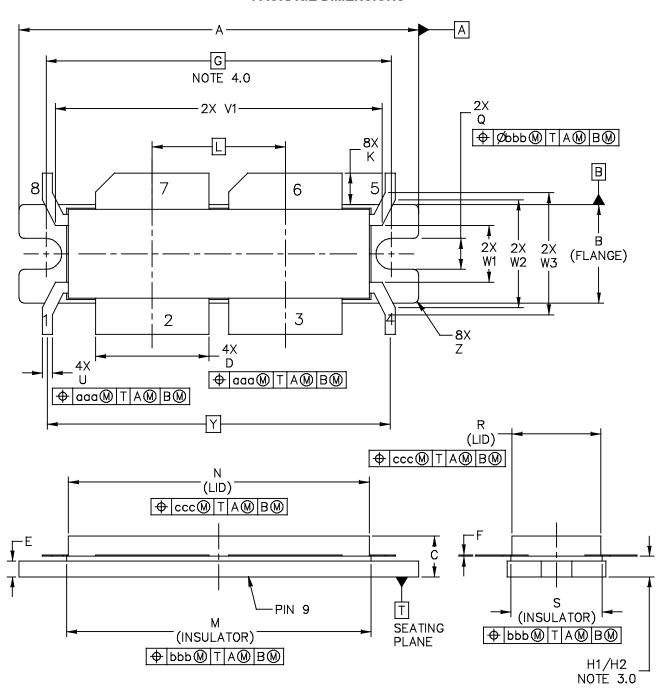

f (MHz)		Z_{source}	${\sf Z}_{\sf load}$
1805	P1dB	2.38 - j6.43	1.30 - j2.46
1845	P1dB	3.70 - j7.13	1.40 - j2.51
1880	P1dB	4.23 - j7.74	1.27 - j2.55

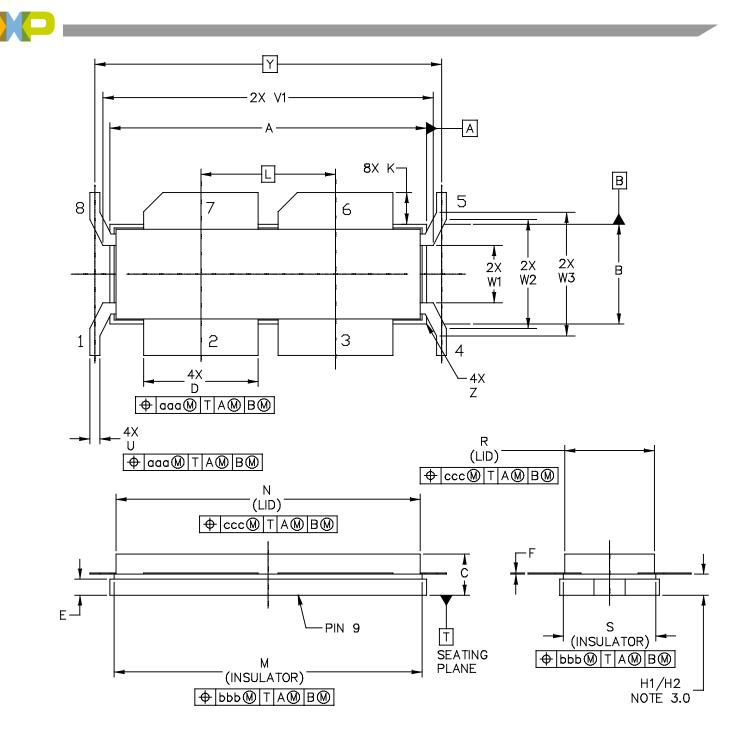
Figure 12. Pulsed CW Output Power versus Input Power @ 30 V

NOTE: Measurement made on the Class AB, carrier side of the device.

8

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NO	T TO SCALE
TITLE:		DOCUMENT NO	: 98ASA00120D	REV: C
NI-1230-8		CASE NUMBER	2: 3751–04	18 JUL 2011
		STANDARD: NO	DN-JEDEC	

NOTES:


1.0 INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.

- 2.0 CONTROLLING DIMENSION: INCH
- 3.0 DIMENSION H1 AND H2 ARE MEASURED .030 (0.762) AWAY FROM PACKAGE BODY. H1 APPLIES TO PINS 2,3,6,7. H2 APPLIES TO PINS 1,4,5,8.
- 4.0 RECOMMENDED BOLT CENTER DIMENSION OF 1.52 (38.61) BASED ON M3 SCREW.

	IN	СН	MILLIMETER				INCH	М	ILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
Α	1.615	1.625	41.02	41.28	N	1.218	1.242	30.9	4 31.55	
В	.395	.405	10.03	10.29	Q	.120	.130	3.05	5 3.3	
C	.150	.200	3.81	5.08	R	.365	.375	9.27	7 9.53	
D	.455	.465	11.56	11.81	s	.365	.375	9.27	7 9.53	
E	.062	.066	1.57	1.68	V1	1.320	1.330	33.5	3 33.78	
F	.004	.007	0.10	0.18	U	.035	.045	0.89) 1.14	
G	1.400	BSC	35	5.56 BSC	W1	.225	.235	5.72	2 5.97	
H1	.082	.090	2.08	2.29	W2	.431	.441	10.9	5 11.20	
H2	.078	.094	1.98	2.39	W3	.491	.501	12.4	7 12.73	
К	.117	.137	2.97	3.48	Y	1.	1.390 BSC		35.31 BSC	
L	.540	BSC	13	.72 BSC	Z	Z R.020		- R0.51		
М	1.219	1.241	30.96	31.52	aaa		.013		0.33	
					bbb		.010		0.25	
					ccc		.020		0.51	
C	© FREESCALE SEMICONDUCTOR, INC. MECHANICA					L OUTLINE PRINT VERS		SION NOT TO SCALE		
TITLE:	TITLE:					DOCUMENT NO: 98ASA00120D RE			REV: C	
		NI-1230)—8		CASE NUMBER: 375I-04 18 JUL				18 JUL 2011	
					STAN	DARD: NO	DN-JEDEC			

MRF8P18265HR6 MRF8P18265HSR6

10

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE	
TITLE:		DOCUMENT NO): 98ASA00155D	REV: B
NI-1230S-8		CASE NUMBER	R: 375J-03	18 JUL 2011
		STANDARD: NO	N-JEDEC	

NOTES:

1.0 INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.

- 2.0 CONTROLLING DIMENSION: INCH
- 3.0 DIMENSION H1 AND H2 ARE MEASURED .030 (0.762) AWAY FROM PACKAGE BODY. H1 APPLIES TO PINS 2,3,6,7. H2 APPLIES TO PINS 1,4,5,8.

4.0 -DELETED-

	IN	СН	MILLIMETER				INCH	M	ILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
А	1.265	1.275	32.13	32.39	N	1.218	1.242	30.9	4 31.55	
В	.395	.405	10.03	10.29	R	.365	.375	9.27	7 9.53	
С	.150	.200	3.81	5.08	s	.365	.375	9.27	9.53	
D	.455	.465	11.56	11.81	U	.035	.045	0.89	9 1.14	
E	.062	.066	1.57	1.68	V1	1.320	1.330	33.5	3 33.78	
F	.004	.007	0.10	0.18	Т3	D	ELETED		DELETED	
H1	.082	.090	2.08	2.29	W1	.225	.235	5.72	2 5.97	
H2	.078	.094	1.98	2.39	W2	.431	.441	10.9	5 10.20	
К	.117	.137	2.97	3.48	W3	.491	.501	12.4	7 12.73	
L	.540	BSC	13	.72 BSC	Y	1.390 BSC		3	35.31 BSC	
М	1.219	1.241	30.96	31.52	Z		R.040		- R1.02	
					aaa .005 0.13			0.13		
					bbb	bbb .010 0.25		0.25		
					ccc		.020		0.51	
© F	© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.					L OUTLINE PRINT VERSIO			T TO SCALE	
TITLE:	TITLE:					DOCUMENT NO: 98ASA00155D R			REV: B	
	NI-1230S-8					CASE NUMBER: 375J-03 18 JUL			18 JUL 2011	
					STAN	DARD: NO	DN-JEDEC			

PRODUCT DOCUMENTATION AND SOFTWARE

Refer to the following documents and software to aid your design process.

Application Notes

- · AN1955: Thermal Measurement Methodology of RF Power Amplifiers
- Engineering Bulletins
- EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- Electromigration MTTF Calculator
- RF High Power Model
- .s2p File

For Software, do a Part Number search at http://www.freescale.com, and select the "Part Number" link. Go to the Software & Tools tab on the part's Product Summary page to download the respective tool.

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	Aug. 2010	Initial Release of Data Sheet
1	Feb. 2012	• Table 3, ESD Protection Characteristics, removed the word "Minimum" after the ESD class rating. ESD ratings are characterized during new product development but are not 100% tested during production. ESD ratings provided in the data sheet are intended to be used as a guideline when handling ESD sensitive devices, p. 2
		 Removed Fig. 5, Possible Circuit Topologies, and renumbered all subsequent figures, p. 5-8 Replaced Case Outline 375I-03, Issue B with 375I-04, Issue C, p. 1, 9, 10. On Sheet 2, changed dimension F in mm from 0.1-0.18 to 0.10-0.18, changed dimension U in mm from 0.89-1.02 to 0.89-1.14,
		 changed dimension W3 in mm from 12.47-12.72 to 12.47-12.73. Replaced Case Outline 375J-02, Issue A with 375J-03, Issue B, p. 1, 11, 12. On Sheet 2, changed dimension A in mm from 32.13-32.38 to 32.13-32.39, changed dimension F in mm from 0.1-0.18 to 0.10-0.18, changed dimension U in mm from 8.89-11.43 to 0.89-1.14.

NP

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2010, 2012. All rights reserved.

