Quad 2-Input Multiplexer with 3-State Outputs

The MC74AC257/74ACT257 is a quad 2–input multiplexer with 3–state outputs. Four bits of data from two sources can be selected using a Common Data Select input. The four outputs present the selected data in true (noninverted) form. The outputs may be switched to a high impedance state by placing a logic HIGH on the common Output Enable (\overline{OE}) input, allowing the outputs to interface directly with bus–oriented systems.

- Multiplexer Expansion by Tying Outputs Together
- Noninverting 3–State Outputs
- Outputs Source/Sink 24 mA
- 'ACT257 Has TTL Compatible Inputs
- These devices are available in Pb-free package(s). Specifications herein apply to both standard and Pb-free devices. Please see our website at www.onsemi.com for specific Pb-free orderable part numbers, or contact your local ON Semiconductor sales office or representative.

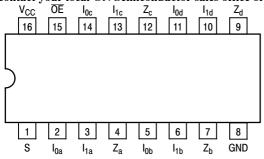
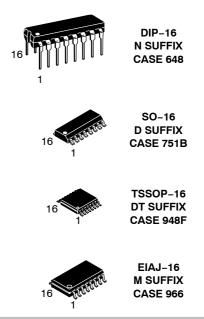



Figure 1. Pinout: 16–Lead Packages Conductors (Top View)

ON Semiconductor®

http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping
MC74AC257N	PDIP-16	25 Units/Rail
MC74ACT257N	PDIP-16	25 Units/Rail
MC74AC257D	SOIC-16	48 Units/Rail
MC74ACT257D	SOIC-16	48 Units/Rail
MC74AC257DR2	SOIC-16	2500 Tape & Reel
MC74ACT257DR2	SOIC-16	2500 Tape & Reel
MC74AC257DT	TSSOP-16	96 Units/Rail
MC74ACT257DT	TSSOP-16	96 Units/Rail
MC74AC257DTR2	TSSOP-16	2500 Tape & Reel
MC74ACT257DTR2	TSSOP-16	2500 Tape & Reel
MC74ACT257M	EIAJ-16	50 Units/Rail
MC74AC257MEL	EIAJ-16	2000 Tape & Reel
MC74ACT257MEL	EIAJ-16	2000 Tape & Reel

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 8 of this data sheet.

PIN NAME

PIN	FUNCTION			
S	S Common Data Select Input			
ŌĒ	OE 3-State Output Enable Input			
$I_{0a} - I_{0d}$	Data Inputs from Source 0			
I _{1a} -I _{1d}	Data Inputs from Source 1			
Z _a -Z _d	3-State Multiplexer Outputs			

TRUTH TABLE

Output Enable	Select Input	Data Inputs		Outputs
ŌĒ	S	I ₀	l ₁	Z
Н	Х	Х	Х	Z
L	н	Х	L	L
L	н	Х	Н	Н
L	L	L	Х	L
L	L	Н	Х	Н

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

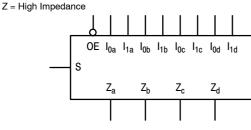
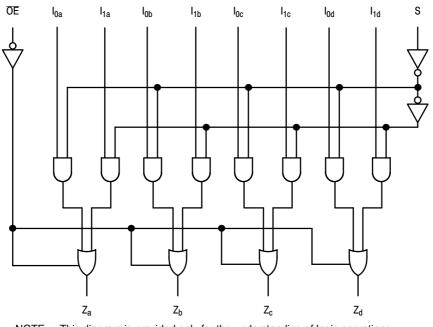


Figure 2. Logic Symbol

FUNCTIONAL DESCRIPTION

The MC74AC257/74ACT257 is a quad 2-input multiplexer with 3-state outputs. It selects four bits of data from two sources under control of a Common Data Select input. When the Select input is LOW, the I_{0x} inputs are selected and when Select is HIGH, the I_{1x} inputs are selected. The data on the selected inputs appears at the outputs in true (noninverted) form. The device is the logic

implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below:


$$Z_{a} = \overline{OE} \cdot (I_{1a} \cdot S + I_{0a} \cdot \overline{S})$$

$$Z_{b} = \overline{OE} \cdot (I_{1b} \cdot S + I_{0b} \cdot \overline{S})$$

$$Z_{c} = \overline{OE} \cdot (I_{1c} \cdot S + I_{0c} \cdot \overline{S})$$

$$Z_{d} = \overline{OE} \cdot (I_{1d} \cdot S + I_{0d} \cdot \overline{S})$$

When the Output Enable input (\overline{OE}) is HIGH, the outputs are forced to a high impedance state. If the outputs are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure the Output Enable signals to 3-state devices whose outputs are tied together are designed so there is no overlap.

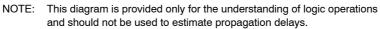


Figure 3. Logic Diagram

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	–0.5 to +7.0	V
V _{IN}	DC Input Voltage (Referenced to GND)	–0.5 to V _{CC} +0.5	V
V _{OUT}	DC Output Voltage (Referenced to GND)	–0.5 to V _{CC} +0.5	V
I _{IN}	DC Input Current, per Pin	±20	mA
I _{OUT}	DC Output Sink/Source Current, per Pin	±50	mA
I _{CC}	DC V _{CC} or GND Current per Output Pin	±50	mA
T _{stg}	Storage Temperature	−65 to +150	°C

*Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recom-mended Operating Conditions.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Parameter			Max	Unit
		'AC	2.0	5.0	6.0	
V _{CC}	Supply Voltage	'ACT	4.5	5.0	5.5	V
V _{IN} , V _{OUT}	DC Input Voltage, Output Voltage (Ref. to GND)		0	-	V _{CC}	V
		V _{CC} @ 3.0 V	-	150	-	
t _r , t _f	Input Rise and Fall Time (Note 1) 'AC Devices except Schmitt Inputs	V _{CC} @ 4.5 V	-	40	-	ns/V
		V _{CC} @ 5.5 V	-	25	-	
	Input Rise and Fall Time (Note 2)	V _{CC} @ 4.5 V	-	10	-	
t _r , t _f	'ACT Devices except Schmitt Inputs	V _{CC} @ 5.5 V	-	8.0	-	ns/V
TJ	Junction Temperature (PDIP)		-	-	140	°C
T _A	Operating Ambient Temperature Range	-40	25	85	°C	
I _{OH}	Output Current – High		-	-	-24	mA
I _{OL}	Output Current – Low		_	-	24	mA

1. 1. V_{in} from 30% to 70% V_{CC} ; see individual Data Sheets for devices that differ from the typical input rise and fall times. 2. 2. V_{in} from 0.8 V to 2.0 V; see individual Data Sheets for devices that differ from the typical input rise and fall times.

DC CHARACTERISTICS

			74	AC	74AC		
Symbol	Parameter	V _{CC} (V)	T _A = +25°C		T _A = –40°C to +85°C	Unit	Conditions
			Тур	Guar	anteed Limits		
V _{IH}	Minimum High Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	2.1 3.15 3.85	2.1 3.15 3.85	v	$V_{OUT} = 0.1 V$ or $V_{CC} - 0.1 V$
V _{IL}	Maximum Low Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	0.9 1.35 1.65	0.9 1.35 1.65	v	$V_{OUT} = 0.1 V$ or $V_{CC} - 0.1 V$
V _{OH}	Minimum High Level Output Voltage	3.0 4.5 5.5	2.99 4.49 5.49	2.9 4.4 5.4	2.9 4.4 5.4	v	I _{OUT} = -50 μA
		3.0 4.5 5.5		2.56 3.86 4.86	2.46 3.76 4.76	v	$ V_{IN} = V_{IL} \text{ or } V_{IH} -12 \text{ mA} I_{OH} -24 \text{ mA} -24 \text{ mA} $
V _{OL}	Maximum Low Level Output Voltage	3.0 4.5 5.5	0.002 0.001 0.001	0.1 0.1 0.1	0.1 0.1 0.1	v	I _{OUT} = 50 μA
		3.0 4.5 5.5		0.36 0.36 0.36	0.44 0.44 0.44	v	$\label{eq:VIN} \begin{array}{c} {}^{*}V_{IN} = V_{IL} \text{ or } V_{IH} \\ 12 \text{ mA} \\ I_{OL} \\ 24 \text{ mA} \\ 24 \text{ mA} \end{array}$
I _{IN}	Maximum Input Leakage Current	5.5	-	±0.1	±1.0	μΑ	V _I = V _{CC} , GND
I _{OZ}	Maximum 3–State Current	5.5	_	±0.5	±5.0	μΑ	
I _{OLD}	†Minimum Dynamic	5.5	-	-	75	mA	V _{OLD} = 1.65 V Max
I _{OHD}	Output Current	5.5	-	-	-75	mA	V _{OHD} = 3.85 V Min
I _{CC}	Maximum Quiescent Supply Current	5.5	-	8.0	80	μΑ	$V_{IN} = V_{CC}$ or GND

*All outputs loaded; thresholds on input associated with output under test. †Maximum test duration 2.0 ms, one output loaded at a time.

NOTE: I_{IN} and I_{CC} @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V V_{CC}.

				74AC		74	AC		
Symbol	Parameter	V _{CC} * (V)	T _A = +25°C C _L = 50 pF			T _A = −40°C to +85°C C _L = 50 pF		Unit	Fig. No.
			Min	Тур	Max	Min	Max		
t _{PLH}	Propagation Delay I _n to Z _n	3.3 5.0	1.5 1.5	5.0 4.0	8.5 6.0	1.0 1.0	9.0 7.0	ns	3–5
t _{PHL}	Propagation Delay I _n to Z _n	3.3 5.0	1.5 1.5	6.0 4.5	8.5 6.0	1.0 1.0	9.0 7.0	ns	3–5
t _{PLH}	Propagation Delay S to Z _n	3.3 5.0	1.5 1.5	7.0 5.0	10.5 7.5	1.5 1.0	11.5 8.5	ns	3–6
t _{PHL}	Propagation Delay S to Z _n	3.3 5.0	1.5 1.5	7.5 5.5	10.5 7.5	1.5 1.0	11.5 8.5	ns	3–6
t _{PZH}	Output Enable Time	3.3 5.0	1.5 1.5	6.5 5.0	9.5 7.5	1.0 1.0	10.5 8.5	ns	3–7
t _{PZL}	Output Enable Time	3.3 5.0	1.5 1.5	5.5 5.0	9.0 8.5	1.0 1.0	10.0 9.5	ns	3–8
t _{PHZ}	Output Disable Time	3.3 5.0	1.5 1.5	5.5 5.0	10.0 9.0	1.0 1.0	11.0 10.0	ns	3–7
t _{PLZ}	Output Disable Time	3.3 5.0	1.5 1.5	5.5 5.0	9.0 8.0	1.0 1.0	10.0 9.0	ns	3–8

AC CHARACTERISTICS (For Figures and Waveforms - See Section 3 of the ON Semiconductor FACT Data Book, DL138/D)

*Voltage Range 3.3 V is 3.3 V ± 0.3 V. *Voltage Range 5.0 V is 5.0 V ± 0.5 V.

DC CHARACTERISTICS

			744	СТ	74ACT		
Symbol			$\begin{array}{c} V_{CC} \\ (V) \end{array} T_{A} = +25^{\circ}C \end{array}$		T _A = –40°C to +85°C	Unit	Conditions
			Тур	Guar	anteed Limits	1	
V _{IH}	Minimum High Level Input Voltage	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	V	V_{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{IL}	Maximum Low Level Input Voltage	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	V	$V_{OUT} = 0.1 V$ or $V_{CC} - 0.1 V$
V _{OH}	Minimum High Level Output Voltage	4.5 5.5	4.49 5.49	4.4 5.4	4.4 5.4	V	I _{OUT} = -50 μA
		4.5 5.5		3.86 4.86	3.76 4.76	v	$*V_{IN} = V_{IL} \text{ or } V_{IH}$ -24 mA I_{OH} -24 mA
V _{OL}	Maximum Low Level Output Voltage	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	V	I _{OUT} = 50 μA
		4.5 5.5		0.36 0.36	0.44 0.44	V	*V _{IN} = V _{IL} or V _{IH} 24 mA I _{OL} 24 mA
I _{IN}	Maximum Input Leakage Current	5.5	-	±0.1	±1.0	μΑ	V _I = V _{CC} , GND
ΔI_{CCT}	Additional Max. I _{CC} /Input	5.5	0.6	-	1.5	mA	$V_{I} = V_{CC} - 2.1 V$
I _{OZ}	Maximum 3-State Current	5.5	_	±0.5	±5.0	μΑ	
I _{OLD}	†Minimum Dynamic	5.5	-	-	75	mA	V _{OLD} = 1.65 V Max
I _{OHD}	Output Current	5.5	-	-	-75	mA	V _{OHD} = 3.85 V Min
I _{CC}	Maximum Quiescent Supply Current	5.5	-	8.0	80	μΑ	$V_{IN} = V_{CC}$ or GND

*All outputs loaded; thresholds on input associated with output under test.

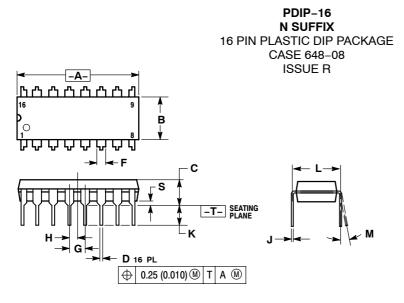
†Maximum test duration 2.0 ms, one output loaded at a time.

AC CHARACTERISTICS (For Figures and Waveforms - See Section 3 of the ON Semiconductor FACT Data Book, DL138/D)

				74ACT		744	СТ		
Symbol	Parameter	V _{CC} * (V)	T _A = +25°C C _L = 50 pF			T _A = −40°C to +85°C C _L = 50 pF		Unit	Fig. No.
			Min	Тур	Max	Min	Max		
t _{PLH}	Propagation Delay I_n to Z_n	5.0	1.5	5.0	7.0	1.0	7.5	ns	3–6
t _{PHL}	Propagation Delay I_n to Z_n	5.0	2.0	6.0	7.5	1.5	8.5	ns	3–6
t _{PLH}	Propagation Delay S to Z _n	5.0	2.0	7.0	9.5	1.5	10.5	ns	3–6
t _{PHL}	Propagation Delay S to Z _n	5.0	2.5	7.0	10.5	2.0	11.5	ns	3–6
t _{PZH}	Output Enable Time	5.0	2.0	6.0	8.0	1.5	9.0	ns	3–7
t _{PZL}	Output Enable Time	5.0	2.0	6.0	8.0	1.5	9.0	ns	3–8
t _{PHZ}	Output Disable Time	5.0	2.5	6.5	9.0	1.5	10.0	ns	3–7
t _{PLZ}	Output Disable Time	5.0	2.0	6.0	7.5	1.5	8.5	ns	3–8

*Voltage Range 5.0 V is 5.0 V ±0.5 V.

CAPACITANCE


Symbol	Parameter	Value Typ	Unit	Test Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = 5.0 V
C _{PD}	Power Dissipation Capacitance	50	pF	V _{CC} = 5.0 V

MARKING DIAGRAMS

DIP-16	SO-16	TSSOP-16	EIAJ-16
<u>ዋወውውውውው</u> MC74AC257N AWLYYWW ወወወወወወ	ΠΠΠΠΠΠ ΑC257 ○ AWLYWW	AAAAAA AC 257 o Alyw HHHHHHH	OTTTTTT
AAAAAAAA MC74ACT257N AWLYYWW ⊽⊽⊽⊽⊽⊽⊽⊽⊽	ΠΠΠΠΠΠ ACT257 O AWLYWW	AAAAAAA ACT 257 ALYW HHHHHHH	OPPODICT 74ACT257 ALYW OPPODICTU
	A Assembly	Landian	

- A = Assembly Location WL, L = Wafer Lot
- YY, Y = Year WW, W = Work Week

PACKAGE DIMENSIONS

4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. INCHES MILLIMETERS DIM MIN MAX MIN MAX
 A
 0.740
 0.770
 18.80
 19.55

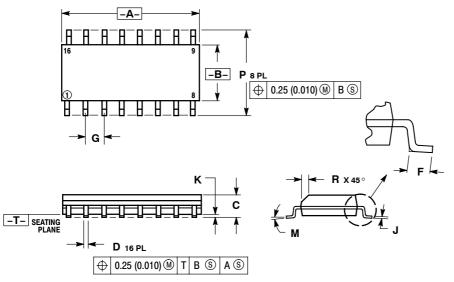
 B
 0.250
 0.270
 6.35
 6.85

 C
 0.145
 0.175

 D
 0.015
 0.021
 4.44 3.69 0.39 0.53 F 0.040 0.70 1.02 1.77 G 0.100 BSC 2.54 BSC Н 0.050 BSC 1.27 BSC J 0.008 0.015 K 0.110 0.130 0.21 0.38 2.80 3.30 L 0.295 0.305 7.50 7.74 Μ 0 10 ' 0 10 ° S 0.020 0.040 0.51 1.01

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI

DIMENSION L TO CENTER OF LEADS WHEN

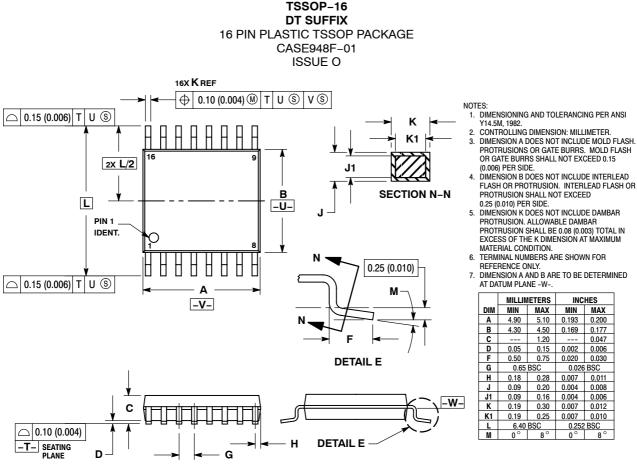

Y14.5M, 1982. CONTROLLING DIMENSION: INCH.

FORMED PARALLEL.

2

3.

SO-16 **D SUFFIX** 16 PIN PLASTIC SOIC PACKAGE CASE 751B-05 **ISSUE J**



NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- PER SIDE. DIMENSION D DOES NOT INCLUDE DAMBAR 5. PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
C	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050	BSC
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
Μ	0 °	7°	0 °	7°
Ρ	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

PACKAGE DIMENSIONS

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI

- Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. 2.
- 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR

INCHES

MIN MAX

0.026 BSC

0.252 BSC

8

0

0.200

0.047

0.006

PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. TERMINAL NUMBERS ARE SHOWN FOR 4.

TEREFERENCE ONLY. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE 5. DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0 46 (0 018)

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
Α		2.05		0.081
A ₁	0.05	0.20	0.002	0.008
p	0.35	0.50	0.014	0.020
C	0.18	0.27	0.007	0.011
D	9.90	10.50	0.390	0.413
Е	5.10	5.45	0.201	0.215
e	1.27 BSC		0.050 BSC	
HE	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
LE	1.10	1.50	0.043	0.059
Μ	0 °	10 °	0 °	10 °
Q1	0.70	0.90	0.028	0.035
Ζ		0.78		0.031

ф ф Щ ф Щs

Ε Η_E

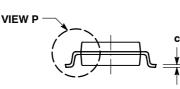
Δ1

 \cap

0.10 (0.004)

ф

7


b

0.13 (0.005) 🕅

 \oplus

е

Г

L 🔫

DETAIL P

CASE966-01 **ISSUE O**

LE

N

EIAJ-16 **M SUFFIX** 16 PIN PLASTIC EIAJ PACKAGE

Q₁

<u>Notes</u>

<u>Notes</u>

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability, arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product create a stuation where personal injury or death may occur. Should Buyer purchase or uses SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persor to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.