

STB16NM50N - STF/I16NM50N STP16NM50N - STW16NM50N

N-channel 500 V - 0.21 Ω - 15 A MDmeshTM II Power MOSFET D²PAK - I²PAK - TO-220 - TO-247- TO-220FP

Features

Туре	V _{DSS} (@Tjmax)	R _{DS(on)} max	I _D
STB16NM50N	550 V	0.26 Ω	15 A
STI16NM50N	550 V	0.26 Ω	15 A
STF16NM50N	550 V	0.26 Ω	15 A ⁽¹⁾
STP16NM50N	550 V	0.26 Ω	15 A
STW16NM50N	550 V	0.26 Ω	15 A

- 1. Limited only by maximum temperature allowed
- 100% avalanche tested
- Low input capacitance and gate charge
- Low gate input resistance

Switching applications

Description

This series of devices is designed using the second generation of MDmeshTM technology. This revolutionary Power MOSFET associates a new vertical structure to the company's strip layout to yield one of the world's lowest charge and gate charge. It is therefore suitable for the most demanding high efficiency converters.

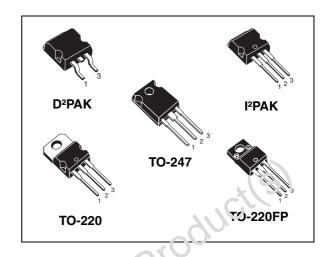


Figure 1. Internal schematic diagram

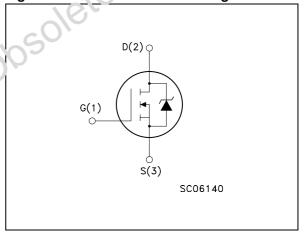


Table : Device summary

10-	Order codes	Marking	Package	Packaging
	STB16NM50N	B16NM50N	D²PAK	Tape and reel
	STI16NM50N	I16NM50N I2PAK		Tube
	STF16NM50N	F16NM50N	TO-220FP	Tube
	STP16NM50N	P16NM50N	TO-220	Tube
	STW16NM50N W16NM50N		TO-247	Tube

March 2008 Rev 2 1/18

Contents

1	Electrical ratings 3
2	Electrical characteristics
3	Test circuit9
4	Package mechanical data10
5	Packaging mechanical data16
6	Revision history
0050	Electrical characteristics

1 Electrical ratings

Table 2. Absolute maximum ratings

		Value	9	
Symbol	Parameter	D ² PAK/I ² PAK TO-220/TO-247	TO-220FP	Unit
V _{DS}	Drain-source voltage (V _{GS} =0)	500		V
V _{GS}	Gate-source voltage	± 25		٧
I _D	Drain current (continuous) at T _C = 25°C	15	15 ⁽¹⁾	Α
I _D	Drain current (continuous) at T _C = 100°C	9.4	9.4 ⁽¹⁾	Α
I _{DM} ⁽²⁾	Drain current (pulsed) 60 60 (1)		60 ⁽¹⁾	Α
P _{TOT}	Total dissipation at T _C = 25°C	125	30	W
dv/dt (3)	Peak diode recovery voltage slope	15		V/ns
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t=1s;T _C =25°C)	00	2500	٧
T _{stg}	Storage temperature	-55 to 1	50	°C
T _j	Max. operating junction temperature	150		°C

- 1. Limited only by maximum temperature allowed
- 2. Pulse width limited by safe operating area
- 3. $I_{SD} \leq 15A$, di/dt $\leq 400A/\mu s$, $V_{DD} = 80\% V_{(BR)DSS}$

Table 3. Thermal data

Symbol	Parameter	Value					
Symbol	raiametei	TO-220	I ² PAK	D ² PAK	TO-247	TO-220FP	Unit
R _{thj-case}	Thermal resistance junction- case max	1			4.2	°C/W	
R _{thj-amb}	Thermal resistance junction- amb max	62.5			50	62.5	°C/W
R _{thj-pcb}	Thermal resistance junction- pcb max			30			°C/W
T _I	Maximum lead temperature for soldering purposes		300				°C

Table 4. Avalanche characteristics

Symbol	Parameter	Max value	Unit
I _{AS}	Avalanche current, repetitive or not-repetitive (pulse width limited by Tj max)	6	Α
E _{AS}	Single pulse avalanche energy (starting Tj=25°C, I _D =I _{AS} , V _{DD} = 50V)	470	mJ

5//

Electrical characteristics 2

(T_{CASE}=25 °C unless otherwise specified)

Table 5. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	500			٧
dv/dt ⁽¹⁾	Drain-source voltage slope	$V_{DD} = 400 \text{ V}, I_{D} = 15 \text{ A},$ $V_{GS} = 10 \text{ V}$		30		V/ns
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = Max rating, V _{DS} = Max rating@125 °C			1 100	μ Α μ Α
I _{GSS}	Gate body leakage current (V _{DS} = 0)	V _{GS} = ±20 V			100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2	3	4	>
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10 V, I _D = 7.5 A	.0	0.21	0.26	Ω

^{1.} Characteristics value at turn off on inductive load

Table 6. **Dynamic**

	Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	9 _{fs} ⁽¹⁾	Forward transconductance	$V_{DS} = 15 \text{ V}, I_{D} = 7.5 \text{ A}$		10		S
	C _{iss} C _{oss} C _{rss} Unput capacitance Output capacitance Reverse transfer capacitance		$V_{DS} = 50 \text{ V, f} = 1 \text{ MHz,}$ $V_{GS} = 0$		1200 80 10		pF pF pF
	C _{oss eq.} (2)	Equivalent output capacitance	$V_{GS} = 0$, $V_{DS} = 0$ to 400 V		170		pF
	Rg	Gate input resistance	f=1 MHz Gate DC Bias=0 Test signal level=20 mV open drain		5		Ω
0/6	Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	$V_{DD} = 400 \text{ V}, I_D = 15 \text{ A}$ $V_{GS} = 10 \text{ V}$ (see Figure 19)		38 7 19		nC nC nC
	1. Pulsed:	pulse duration = 300µs, duty cycle	e 1.5%				

^{1.} Pulsed: pulse duration = 300µs, duty cycle 1.5%

^{2.} $C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 7. **Switching times**

Symbol	Parameter	Test conditions	Min.	Тур	Max	Unit
t _{d(on)} t _r t _{d(off)} t _f	Turn-on delay time Rise time Turn-off delay time Fall time	$V_{DD} = 250 \text{ V}, I_D = 7.5 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see Figure 18)		20 15 60 16		ns ns ns

Table 8. Source drain diode

	Parameter	Test conditions	Min.	Тур	Max	Unit
I _{SD}	Source-drain current				15	Α
I _{SDM}	Source-drain current (pulsed)				60	Α
V _{SD} ⁽¹⁾	Forward on voltage	$I_{SD} = 15 \text{ A}, V_{GS} = 0$			1.3	V
t _{rr}	Reverse recovery time	$I_{SD} = 15 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s,}$		400	10	ns
Q _{rr}	Reverse recovery charge	$V_{DD} = 100 V$ (see Figure 23)		5		μC
I _{RRM}	Reverse recovery current	, ,		24		Α
t _{rr}	Reverse recovery time	V _{DD} = 100 V	70	500		ns
Q _{rr} I _{RRM}	Reverse recovery charge Reverse recovery current	di/dt =100 A/ μ s, I _{SD} = 15 A Tj = 150 °C (see Figure 23)	0	6 24		μC A
	(5)					
ie P	Reverse recovery current pulse duration = 300µs, duty cycle 1.					

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area for TO-220 / D²PAK / I²PAK

Figure 3. Thermal impedance for TO-220 / D²PAK / I²PAK

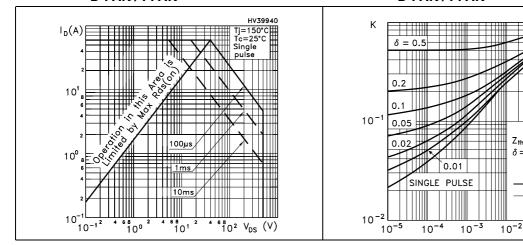


Figure 4. Safe operating area for TO-220FP

Figure 5. Thermal impedance for TO-220FP

 $\delta = \, t_{\rm p}/\tau$

 $10^{-1} t_p(s)$

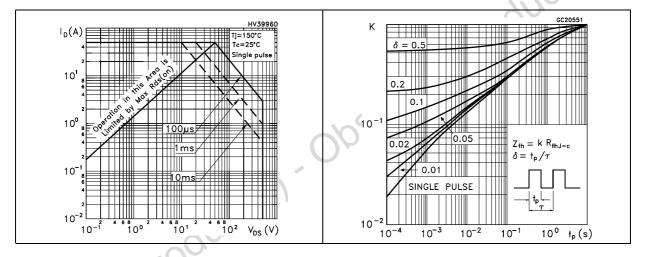


Figure 6. Safe operating area for TO-247

Figure 7. Thermal impedance for TO-247

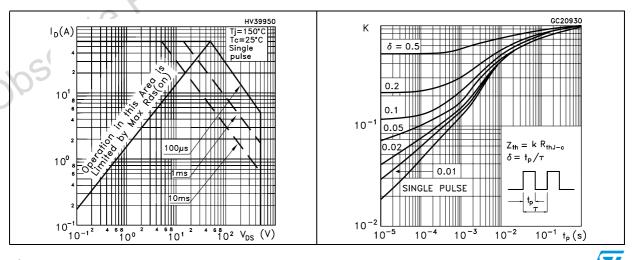
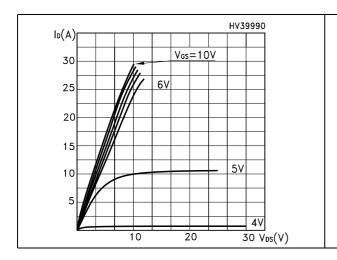



Figure 8. Output characteristics

Figure 9. Transfer characteristics

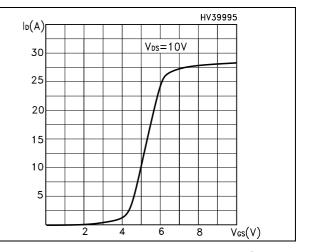


Figure 10. Transconductance

Figure 11. Static drain-source on resistance

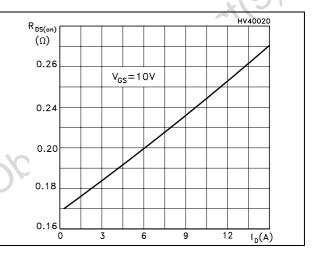
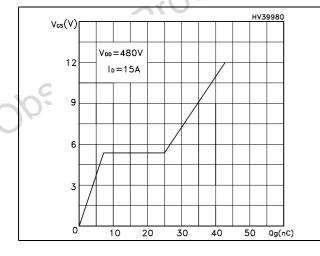
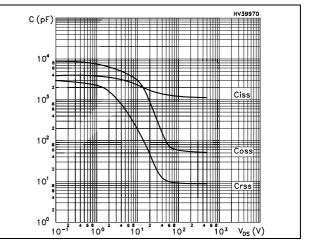
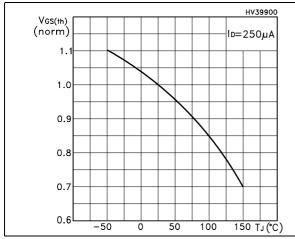




Figure 12. Gate charge vs gate-source voltage Figure 13. Capacitance variations



5//

Figure 14. Normalized gate threshold voltage vs temperature

Figure 15. Normalized on resistance vs temperature

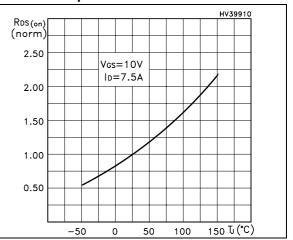
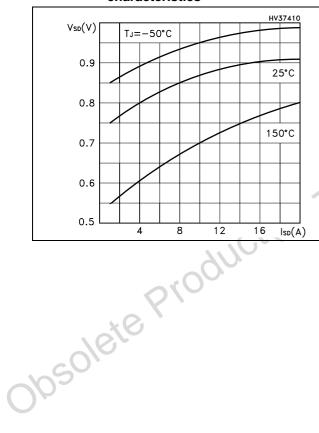
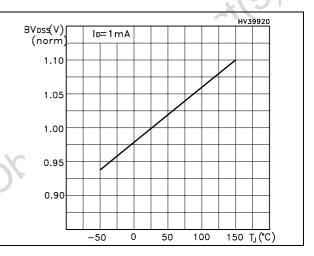




Figure 16. Source-drain diode forward characteristics

Figure 17. Normalized B_{VDSS} vs temperature

3 Test circuit

Figure 18. Switching times test circuit for resistive load

Figure 19. Gate charge test circuit

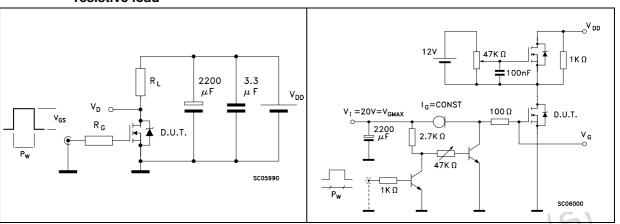


Figure 20. Test circuit for inductive load switching and diode recovery times

Figure 21. Unclamped Inductive load test circuit

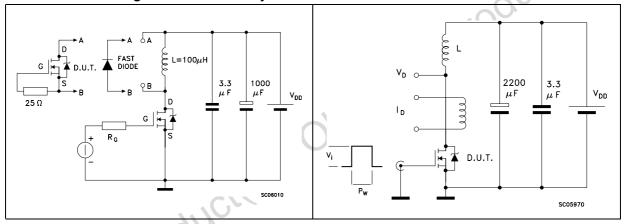
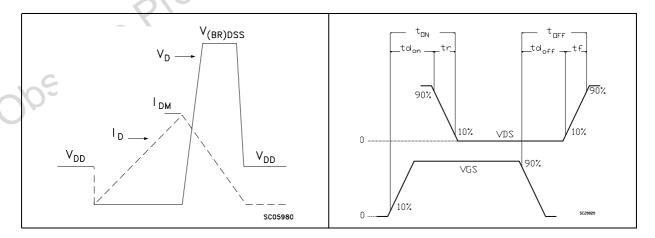
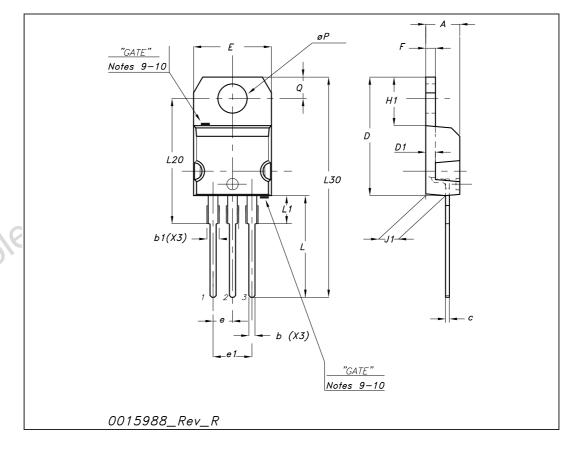



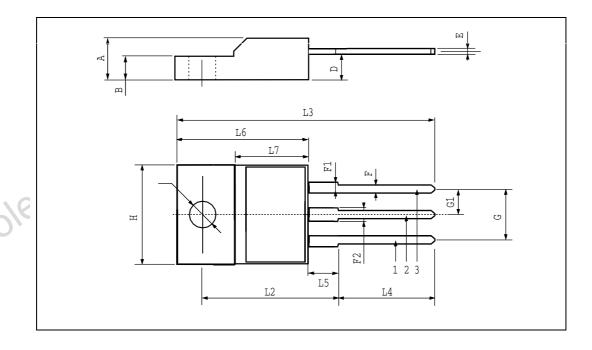
Figure 22. Unclamped inductive waveform

Figure 23. Switching time waveform

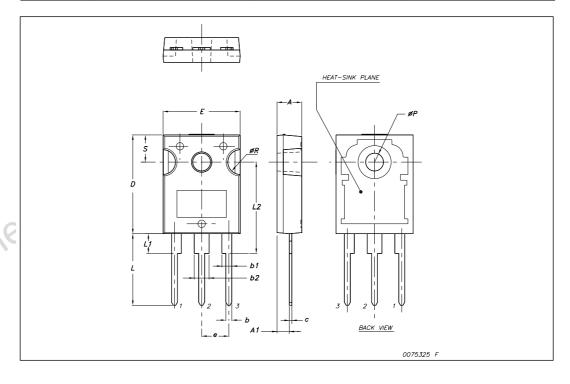

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

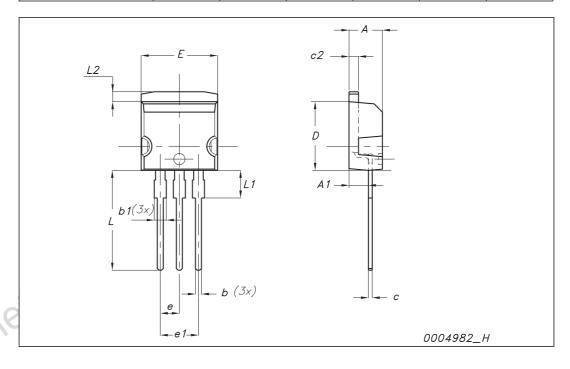
Obsolete Product(s). Obsolete Product(s)


TO-220	mach	anica	dota
10-220	11100:11	anica	i uaia

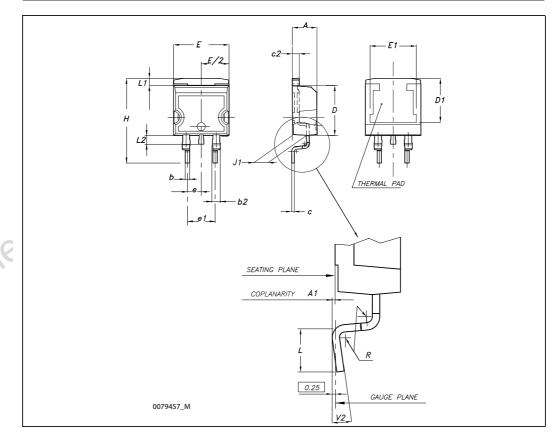
D!		mm			inch	
Dim	Min	Тур	Max	Min	Тур	Max
Α	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.14		1.70	0.044		0.066
С	0.48		0.70	0.019		0.027
D	15.25		15.75	0.6		0.62
D1		1.27			0.050	
E	10		10.40	0.393		0.409
е	2.40		2.70	0.094		0.106
e1	4.95		5.15	0.194		0.202
F	1.23		1.32	0.048		0.051
H1	6.20		6.60	0.244		0.256
J1	2.40		2.72	0.094		0.107
L	13		14	0.511		0.551
L1	3.50		3.93	0.137		0.154
L20		16.40			0.645	
L30		28.90			1.137	
ØP	3.75		3.85	0.147		0.151
Q	2.65		2.95	0.104		0.116


TO-220FP mechanical data

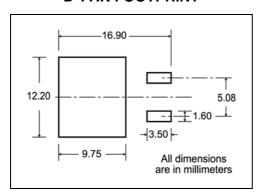
DIM.	mm.			inch			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	4.4		4.6	0.173		0.181	
В	2.5		2.7	0.098		0.106	
D	2.5		2.75	0.098		0.108	
E	0.45		0.7	0.017		0.027	
F	0.75		1	0.030		0.039	
F1	1.15		1.7	0.045		0.067	
F2	1.15		1.7	0.045		0.067	
G	4.95		5.2	0.195		0.204	
G1	2.4		2.7	0.094		0.106	
Н	10		10.4	0.393		0.409	
L2		16			0.630		
L3	28.6		30.6	1.126		1.204	
L4	9.8		10.6	.0385		0.417	
L5	2.9		3.6	0.114		0.141	
L6	15.9		16.4	0.626		0.645	
L7	9		9.3	0.354		0.366	
Ø	3		3.2	0.118		0.126	


TO-247 Mechanical data

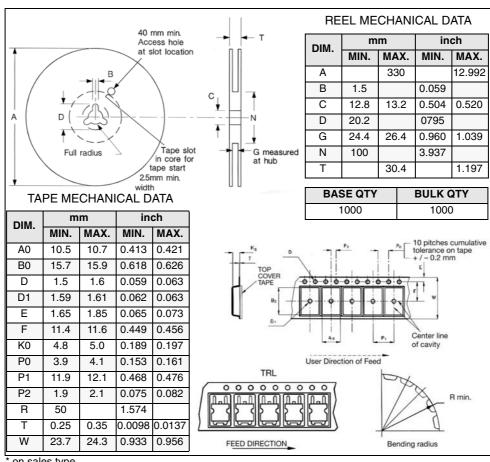
Dim.	mm.					
	Min.	Тур	Max.			
Α	4.85		5.15			
A1	2.20		2.60			
b	1.0		1.40			
b1	2.0		2.40			
b2	3.0		3.40			
С	0.40		0.80			
D	19.85		20.15			
Е	15.45		15.75			
е		5.45				
L	14.20		14.80			
L1	3.70		4.30			
L2		18.50				
øΡ	3.55		3.65			
øR	4.50		5.50			
S		5.50				


I²PAK (TO-262) mechanical data

Dim	mm			inch		
	Min	Тур	Max	Min	Тур	Max
A	4.40		4.60	0.173		0.181
A1	2.40		2.72	0.094		0.107
b	0.61		0.88	0.024		0.034
b1	1.14		1.70	0.044		0.066
С	0.49		0.70	0.019		0.027
c2	1.23		1.32	0.048		0.052
D	8.95		9.35	0.352		0.368
е	2.40		2.70	0.094		0.106
e1	4.95		5.15	0.194		0.202
E	10		10.40	0.393		0.410
L	13		14	0.511		0.551
L1	3.50		3.93	0.137		0.154
L2	1.27		1.40	0.050		0.055


D²PAK (TO-263) mechanical data

Dim	mm			inch		
	Min	Тур	Max	Min	Тур	Max
Α	4.40		4.60	0.173		0.181
A1	0.03		0.23	0.001		0.009
b	0.70		0.93	0.027		0.037
b2	1.14		1.70	0.045		0.067
С	0.45		0.60	0.017		0.024
c2	1.23		1.36	0.048		0.053
D	8.95		9.35	0.352		0.368
D1	7.50			0.295		
Е	10		10.40	0.394		0.409
E1	8.50			0.334		
е		2.54			0.1	
e1	4.88		5.28	0.192		0.208
Н	15		15.85	0.590		0.624
J1	2.49		2.69	0.099		0.106
L	2.29		2.79	0.090		0.110
L1	1.27		1.40	0.05		0.055
L2	1.30		1.75	0.051		0.069
R		0.4			0.016	
V2	0°		8°	0°		8°



Packaging mechanical data 5

D²PAK FOOTPRINT

TAPE AND REEL SHIPMENT

6 Revision history

Table 9. Document revision history

Date	Revision	Changes
12-Oct-2007	1	First release
04-Mar-2008	2	Table 3: Thermal data has been updated.

Obsolete Product(s). Obsolete Product(s)

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Downloaded from Arrow.com.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

