DUAL 4-INPUT MULTIPLEXER WITH 3-STATE OUTPUTS

The MC54/74F253 is a Dual 4-Input Multiplexer with 3-State Outputs. It can select two bits of data from four sources using common select inputs. The outputs may be individually switched to a high-impedance state with a HIGH on the respective Output Enable (OE) inputs, allowing the outputs to interface directly with bus-oriented systems.

CONNECTION DIAGRAM DIP (TOP VIEW)

ORDERING INFORMATION

MC54FXXXJ	Ceramic
MC74FXXXN	Plastic
MC74FXXXD	SOIC

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Typ	Max	Unit
V_{CC}	Supply Voltage	54,74	4.5	5.0	5.5	$\mathrm{~V}^{\prime}$
T_{A}	Operating Ambient Temperature Range	54	-55	25	125	${ }^{\circ} \mathrm{C}$
		74	0	25	70	
I_{OH}	Output Current - High	54,74			-3.0	mA
I_{OL}	Output Current - Low	54,74			24	mA

MC54/74F253

LOGIC DIAGRAM

FUNCTIONAL DESCRIPTION

The F253 contains two identical 4-input Multiplexers with 3-State Outputs. They select two bits from four sources selected by common Select Inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$). The 4 -input multiplexers have individual Output Enable ($\overline{\mathrm{OE}}_{\mathrm{a}}, \overline{\mathrm{OE}}_{\mathrm{b}}$) inputs which, when HIGH, force the outputs to a high impedance (high Z) state.

The F253 is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two select inputs. The logic equations for the outputs are shown below:

$$
\begin{array}{r}
\mathrm{Z}_{\mathrm{a}}=\overline{\mathrm{OE}}_{\mathrm{a}} \cdot\left(\mathrm{I}_{0 \mathrm{a}} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1 \mathrm{a}} \cdot \overline{\mathrm{~S}}_{1} \cdot \mathrm{~S}_{0}+\right. \\
\left.\mathrm{I}_{2 \mathrm{a}} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{3 \mathrm{a}} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{0}\right) \\
\mathrm{Z}_{\mathrm{b}}=\overline{\mathrm{OE}}_{\mathrm{b}} \cdot\left(\mathrm{I}_{0 \mathrm{~b}} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{0} \mathrm{I}_{\mathrm{lb}} \cdot \overline{\mathrm{~S}}_{1} \cdot \mathrm{~S}_{0}+\right. \\
\left.\mathrm{I}_{2 \mathrm{~b}} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{3 \mathrm{~b}} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{0}\right)
\end{array}
$$

If the outputs of 3-state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3-state devices whose outputs are tied together are designed so that there is no overlap.

FUNCTION TABLE

Select Inputs		Data Inputs				Output Enable	Output
S_{0}	S_{1}	I_{0}	I_{1}	I_{2}	I_{3}	OE	Z
X	X	X	X	X	X	H	Z
L	L	L	X	X	X	L	L
L	L	H	X	x	x	L	H
H	L	X	L	x	x	L	L
H	L	X	H	X	x	L	H
L	H	X	X	L	x	L	L
L	H	X	x	H	X	L	H
H	H	X	x	X	L	L	L
H	H	X	X	X	H	L	H

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
X = Don't Care
$\mathrm{Z}=$ High Impedance (off)
Address inputs S_{0} and S_{1} are common to both sections.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter			Limits		Unit	Test Conditions	
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V	Guaranteed Input LOW Voltage	
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage				-1.2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$
V_{OH}	Output HIGH Voltage	54, 74	2.4			V	$\mathrm{IOH}=-3.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=4.50 \mathrm{~V}$
		74	2.7			V	$\mathrm{IOH}=-3.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage				0.5	V	$\mathrm{IOL}=24 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$
IOZH	Output Off Current - HIGH				50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$	$\mathrm{V}_{C C}=\mathrm{MAX}$
IOZL	Output Off Current - LOW				-50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$	$V_{C C}=$ MAX
IIH	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$	$\mathrm{V}_{C C}=\mathrm{MAX}$
					100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$	
IIL	Input LOW Current				-0.6	mA	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$	$V_{C C}=$ MAX
Ios	Output Short Circuit Current (Note 2)		-60		-150	mA	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	$V_{C C}=$ MAX
ICC	Power Supply Current Total, Output HIGH Total, Output LOW Total at HIGH-Z				16	mA	$\begin{aligned} & \mathrm{OE}_{\mathrm{n}}=\mathrm{GND} \\ & \mathrm{I}=4.5 \mathrm{~V} ; \mathrm{S}_{\mathrm{n}}, \mathrm{I}_{1}-\mathrm{I}_{3}=\mathrm{GND} \end{aligned}$	
					23		$\begin{aligned} & I_{n}, S_{n}, O E_{n}=G N \\ & V_{C C}=M A X \end{aligned}$	
					23		$\begin{aligned} & \mathrm{OE}_{\mathrm{n}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}} \\ & \mathrm{I}_{\mathrm{n}}, \mathrm{~S}_{\mathrm{n}}=\mathrm{GND} \end{aligned}$	

AC CHARACTERISTICS

Symbol	Parameter							Unit
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Max	Min	Max	Min	Max	
$\begin{aligned} & \hline \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay S_{n} to Z_{n}	$\begin{aligned} & \hline 4.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 11.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 15 \\ & 11 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} 13.5 \\ 10 \end{gathered}$	ns
$\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$	Propagation Delay $I_{n} \text { to } Z_{n}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$	3.0 2.5	$\begin{aligned} & 8.0 \\ & 7.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpZH } \\ & \text { tpZL } \end{aligned}$	Output Enable Time	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpHZ } \\ & \text { tpLZ } \end{aligned}$	Output Disable Time	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \end{aligned}$	ns

