Dual 2-to-4 Decoder/ Demultiplexer

The MC74VHCT139A is an advanced high speed CMOS 2-to-4 decoder/demultiplexer fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL devices while maintaining CMOS low power dissipation.

When the device is enabled ($\overline{E} = low$), it can be used for gating or as a data input for demultiplexing operations. When the enable input is held high, all four outputs are fixed high, independent of other inputs.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output.

The device output is compatible with TTL-type input thresholds and the output has a full 5.0 V CMOS level output swing. The input protection circuitry on this device allows overvoltage tolerance on the input, allowing the device to be used as a logic-level translator from 3.0 V CMOS logic to 5.0 V CMOS logic, or from 1.8 V CMOS logic to 3.0 V CMOS logic while operating at the high-voltage power

The MC74VHCT139A input structure provides protection when voltages up to 7.0 V are applied, regardless of the supply voltage. This allows the MC74VHCT139A to be used to interface 5.0 V circuits to 3.0 V circuits. The output structures also provide protection when V_{CC} = 0 V. These input and output structures help prevent device destruction caused by supply voltage-input/output voltage mismatch, battery backup, hot insertion, etc.

Features

- High Speed: $t_{PD} = 5.0 \text{ ns (Typ)}$ at $V_{CC} = 5.0 \text{ V}$
- Low Power Dissipation: $I_{CC} = 4 \mu A$ (Max) at $T_A = 25^{\circ}C$
- TTL-Compatible Inputs: $V_{IL} = 0.8 \text{ V}$; $V_{IH} = 2.0 \text{ V}$
- Power Down Protection Provided on Inputs and Outputs
- Balanced Propagation Delays
- Designed for 2.0 V to 5.5 V Operating Range
- Low Noise: $V_{OLP} = 0.8 \text{ V (Max)}$
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- ESD Performance:

Human Body Model > 2000 V; Machine Model > 200 V

- Chip Complexity: 100 FETs or 25 Equivalent Gates
- These Devices are Pb-Free and are RoHS Compliant

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

SOIC-16 **D SUFFIX** CASE 751B

TSSOP-16 **DT SUFFIX** CASE 948F

= Assembly Location

= Wafer Lot = Year = Work Week = Pb-Free Package

(Note: Microdot may be in either location)

FUNCTION TABLE

		Out	puts			
E	A1	A0	<u>Y0</u>	<u>Y1</u>	<u>Y2</u>	<u>Y3</u>
Н	Х	Χ	Н	Н	Н	Н
L	L	L	L	Н	Н	Н
L	L	Н	Н	L	Н	Н
L	н	L	Н	Н	L	Н
L	Н	Н	Н	Н	Н	L

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

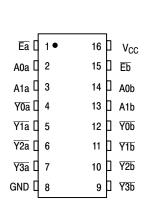


Figure 1. Pin Assignment

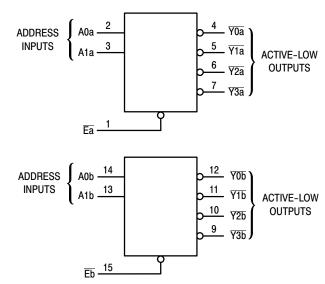


Figure 2. Logic Diagram

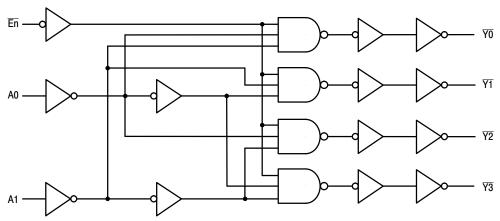


Figure 3. Expanded Logic Diagram (1/2 of Device)

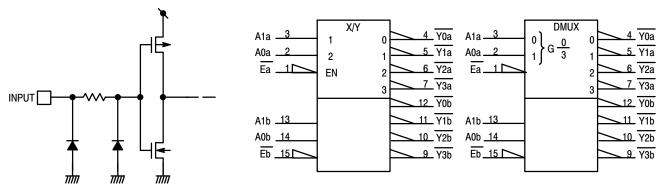


Figure 4. Input Equivalent Circuit

Figure 5. IEC Logic Diagram

MAXIMUM RATINGS

Symbol		Parameter	Value	Unit
V _{CC}	Positive DC Supply Voltage		-0.5 to +7.0	V
V _{IN}	Digital Input Voltage		-0.5 to +7.0	V
V _{OUT}	DC Output Voltage	Output in 3–State High or Low State	-0.5 to +7.0 -0.5 to V _{CC} +0.5	V
I _{IK}	Input Diode Current		-20	mA
I _{OK}	Output Diode Current		±20	mA
I _{OUT}	DC Output Current, per Pin		± 25	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pir	ns	±75	mA
P_{D}	Power Dissipation in Still Air	SOIC TSSOP	200 180	mW
T _{STG}	Storage Temperature Range		-65 to +150	°C
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 1) Machine Model (Note 2) Charged Device Model (Note 3)	>2000 >200 >2000	V
I _{LATCHUP}	Latchup Performance	Above V _{CC} and Below GND at 125°C (Note 4)	±300	mA
$\theta_{\sf JA}$	Thermal Resistance, Junction-to-Am	bient SOIC TSSOP	143 164	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Tested to EIA/JESD22-A114-A
- 2. Tested to EIA/JESD22-A115-A
- 3. Tested to JESD22-C101-A
- 4. Tested to EIA/JESD78

RECOMMENDED OPERATING CONDITIONS

Symbol	Characteristics	Min	Max	Unit
V _{CC}	DC Supply Voltage	4.5	5.5	V
V _{IN}	DC Input Voltage	0	5.5	V
V _{OUT}	DC Output Voltage Output in 3-State High or Low State	0	5.5 V _{CC}	V
T _A	Operating Temperature Range, all Package Types	-55	125	°C
t _r , t _f	Input Rise or Fall Time $V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$	0	20	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1% BOND FAILURES

Junction Temperature °C	Time, Hours	Time, Years
80	1,032,200	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

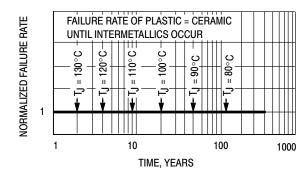
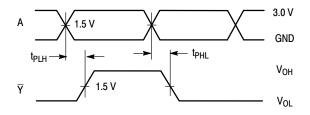


Figure 6. Failure Rate vs. Time Junction Temperature

DC CHARACTERISTICS (Voltages Referenced to GND)


			V _{CC}	Т	A = 25°	С	T _A ≤	85°C		- 55 to 5°C	
Symbol	Parameter	Condition	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
V _{IH}	Minimum High-Level Input Voltage		4.5 to 5.5	2			2		2		V
V _{IL}	Maximum Low-Level Input Voltage		4.5 to 5.5			0.8		0.8		0.8	V
V _{OH}	Maximum High-Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -50 \mu\text{A}$	4.5	4.4	4.5		4.4		4.4		V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -8 \text{ mA}$	4.5	3.94			3.8		3.66		
V _{OL}	Maximum Low–Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 50 \mu A$	4.5		0	0.1		0.1		0.1	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = 8 \text{ mA}$	4.5			0.36		0.44		0.52	
I _{IN}	Input Leakage Current	$V_{IN} = 5.5 \text{ V or GND}$	0 to 5.5			±0.1		±1.0		±1.0	μΑ
Icc	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5			4.0		40.0		40.0	μΑ
Ісст	Additional Quiescent Supply Current (per Pin)	Any one input: $V_{IN} = 3.4 \text{ V}$ All other inputs: $V_{IN} = V_{CC} \text{ or GND}$	5.5			1.35		1.5		1.5	μΑ
I _{OPD}	Output Leakage Current	V _{OUT} = 5.5 V	0			0.5		5		5	μΑ

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ns}$)

					T _A = 25°C		$T_A \le 85^{\circ}C$		T _A = - 55 to 125°C		
Symbol	Parameter	Test Condi	tions	Min	Тур	Max	Min	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, A to Y	$V_{CC} = 3.3 \pm 0.3 \text{ V}$	$C_L = 15 \text{ pF}$ $C_L = 50 \text{ pF}$		7.2 9.7	11.0 14.5	1.0 1.0	13.0 16.5	1.0 1.0	13.0 16.5	ns
		$V_{CC} = 5.0 \pm 0.5 \text{ V}$	$C_L = 15 \text{ pF}$ $C_L = 50 \text{ pF}$		5.0 6.5	7.2 9.2	1.0 1.0	8.5 10.5	1.0 1.0	8.5 10.5	
t _{PLH} , t _{PHL}	Maximum Propagation Delay, E to Y	$V_{CC} = 3.3 \pm 0.3 \text{ V}$	$C_L = 15 \text{ pF}$ $C_L = 50 \text{ pF}$		6.4 8.9	9.2 12.7	1.0 1.0	11.0 14.5	1.0 1.0	11.0 14.5	ns
		$V_{CC} = 5.0 \pm 0.5 \text{ V}$	$C_L = 15 pF$ $C_L = 50 pF$		4.4 5.9	6.3 8.3	1.0 1.0	7.5 9.5	1.0 1.0	7.5 9.5	
C _{IN}	Maximum Input Capacitance				4	10		10		10	pF

I			Typical @ 25°C, V _{CC} = 5.0V	
	C_{PD}	Power Dissipation Capacitance (Note 5)	26	pF

^{5.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}/2 (per decoder). C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

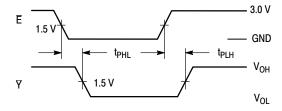
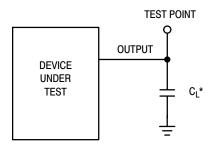



Figure 7. Switching Waveform

Figure 8. Switching Waveform

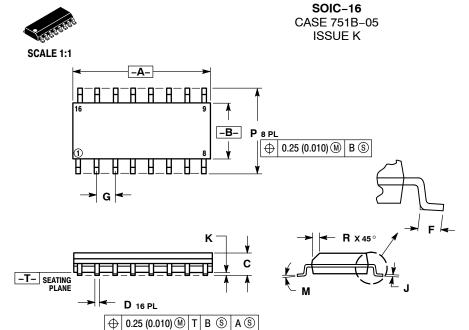

*Includes all probe and jig capacitance

Figure 9. Test Circuit

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74VHCT139ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74VHCT139ADR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel
MC74VHCT139ADTG	TSSOP-16 (Pb-Free)	96 Units / Rail
MC74VHCT139ADTRG	TSSOP-16 (Pb-Free)	2500 Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DATE 29 DEC 2006

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- THE NOTION AND TOLETANOING FER ANSI'Y 14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
- PHOI HUSION.

 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

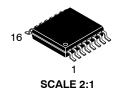
 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR PROTRUSION

 SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D

 DIMENSION AT MAXIMUM MATERIAL CONDITION.

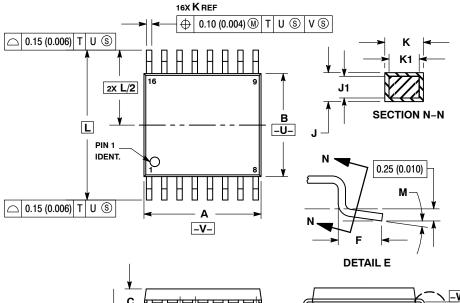
	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050 BSC		
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:			
	COLLECTOR		CATHODE	PIN 1.	COLLECTOR, DYE #1	PIN 1.	COLLECTOR, DY		
2.	BASE		ANODE	2.	BASE, #1	2.	COLLECTOR, #1		
3.	EMITTER	3.	NO CONNECTION	3.	EMITTER, #1	3.	COLLECTOR, #2		
4.	NO CONNECTION	4.	CATHODE	4.	COLLECTOR, #1	4.	COLLECTOR, #2		
5.	EMITTER	5.	CATHODE	5.	COLLECTOR, #2	5.	COLLECTOR, #3		
6.	BASE	6.	NO CONNECTION	6.	BASE, #2	6.	COLLECTOR, #3		
7.	COLLECTOR	7.	ANODE	7.	EMITTER, #2	7.	COLLECTOR, #4		
8.	COLLECTOR	8.	CATHODE	8.	COLLECTOR, #2	8.	COLLECTOR, #4		
9.	BASE		CATHODE	9.	COLLECTOR, #3	9.	BASE, #4		
10.	EMITTER		ANODE	10.	BASE, #3	10.	EMITTER, #4		
11.	NO CONNECTION		NO CONNECTION	11.	EMITTER, #3	11.	BASE, #3		
12.	EMITTER		CATHODE	12.	COLLECTOR, #3	12.	EMITTER, #3		
13.	BASE		CATHODE	13.	COLLECTOR, #4	13.	BASE, #2	SOI DEE	RING FOOTPRINT
14.	COLLECTOR		NO CONNECTION	14.	BASE, #4	14.	EMITTER, #2	SOLDER	IIIIG FOOTFRINT
15.	EMITTER			15.	EMITTER, #4	15.	BASE, #1		8X
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, #4	16.	EMITTER, #1	—	— 6.40 — >
									0.10
STYLE 5:		STYLE 6:		STYLE 7:					16X 1.12 ✓ ➤
PIN 1.	DRAIN, DYE #1		CATHODE	PIN 1.	SOURCE N-CH				
2.	DRAIN, #1		CATHODE	2.	COMMON DRAIN (OUTPUT	7)		. \Box 1	16
3.	DRAIN, #2	3.	CATHODE	3.	COMMON DRAIN (OUTPUT			, — ·	
4.	DRAIN, #2	4.	CATHODE	4.	GATE P-CH	,			
5.	DRAIN, #3	5.	CATHODE	5.	COMMON DRAIN (OUTPUT	7)		16X 🛣	
6.	DRAIN, #3		CATHODE	6.	COMMON DRAIN (OUTPUT			.58 J	' <u> </u>
7.	DRAIN, #4		CATHODE	7.	COMMON DRAIN (OUTPUT		U		1
8.	DRAIN. #4	8.	CATHODE	8.	SOURCE P-CH	,			
9.	GATE, #4	9.	ANODE	9.	SOURCE P-CH				
10.	SOURCE, #4	10.	ANODE	10.	COMMON DRAIN (OUTPUT	7)			
11.	GATE, #3	11.	ANODE	11.	COMMON DRAIN (OUTPUT				
12.	SOURCE, #3	12.	ANODE	12.	COMMON DRAIN (OUTPUT				
13.	GATE, #2	13.	ANODE	13.	GATE N-CH	,			
14.	SOURCE, #2	14.	ANODE	14.	COMMON DRAIN (OUTPUT	7)			— ↓ PITCH
15.	GATE, #1	15.	ANODE	15.	COMMON DRAIN (OUTPUT				<u> </u>
16.	SOURCE, #1		ANODE	16.	SOURCE N-CH	,			
	/""		-					□ ₈	9 +
								۰	,
									DIMENSIONS: MILLIMETERS


DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED"	' '
DESCRIPTION:	SOIC-16		PAGE 1 OF 1

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

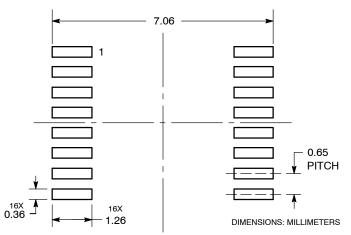
0.10 (0.004)


D

-T- SEATING PLANE

TSSOP-16 CASE 948F-01 ISSUE B

DATE 19 OCT 2006


NOTES

- JIES:
 DIMENSIONING AND TOLERANCING PER
 ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD
 FLASH. PROTRUSIONS OR GATE BURRS.
 MOLD EL ROLL OF GATE BURDS SUAL NO.
- MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
- DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
- DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026 BSC		
Н	0.18	0.28	0.007	0.011	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40	BSC	0.252	BSC	
M	0°	8°	0°	8 °	

SOLDERING FOOTPRINT

G

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code Α = Assembly Location

= Wafer Lot L Υ = Year W = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1

DETAIL E

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative