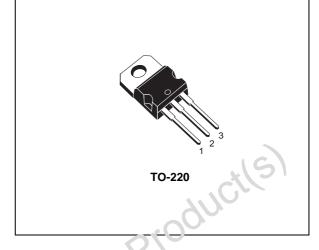
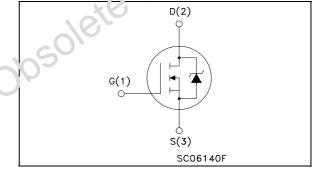


IRF520 N-CHANNEL 100V - 0.115 Ω - 10A TO-220 LOW GATE CHARGE STripFET™ II POWER MOSFET

ТҮРЕ	V _{DSS}	R _{DS(on)}	ID
IRF520	100 V	<0.27 Ω	10 A


- TYPICAL $R_{DS}(on) = 0.115\Omega$
- AVALANCHE RUGGED TECHNOLOGY
- 100% AVALANCHE TESTED
- LOW GATE CHARGE
- HIGH CURRENT CAPABILITY
- 175 °C OPERATING TEMPERATURE

DESCRIPTION


This MOSFET series realized with STMicroelectronics unique STripFET[™] process has specifically been designed to minimize input capacitance and gate charge. It is therefore suitable as primary switch in advanced high-efficiency, high-frequency isolated DC-DC converters for Telecom and Computer applications. It is also intended for any applications with low gate drive requirements.

APPLICATIONS

- HIGH CURRENT, HIGH SWITCHING SPEED
- SOLENOID AND RELAY DRIVERS
- REGULATOR
- DC-DC & DC-AC CONVERTERS
- MOTOR CONTROL, AUDIO AMPLIFIERS
- AUTOMOTIVE ENVIRONMENT (INJECTION, ABS, AIR-BAG, LAMPDRIVERS, etc.)

INTERNAL SCHEM.\TIC DIAGRAM

Symbol	Parameter	Value	Unit
V _{DS}	\mathcal{D}_{air} -source Voltage (V _{GS} = 0)	100	V
VDGR	I Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	100	V
Vis Gate- source Voltage		± 20	V
T_D Drain Current (continuous) at $T_C = 25^{\circ}C$		10	A
I_D Drain Current (continuous) at $T_C = 100^{\circ}C$		7	A
I _{DM} (•) Drain Current (pulsed)		40	А
P _{tot}	Total Dissipation at $T_C = 25^{\circ}C$	60	W
	Derating Factor	0.4	W/°C
dv/dt ⁽¹⁾	Peak Diode Recovery voltage slope	20	V/ns
E _{AS} ⁽²⁾ Single Pulse Avalanche Energy		100	mJ
T _{stg} Storage Temperature		-55 to 175	°C
Тj	Operating Junction Temperature	-55 10 175	
) Pulse width	imited by safe operating area.	(1) I _{SD} ≤10A, di/dt ≤300A/µs, V _{DD} ≤ V _{(BR)DSS} , T _j ≤	T _{JMAX}

(2) Starting $T_j = 25 \,^{\circ}$ C, $I_D = 10$ A, $V_{DD} = 50$ V

August 2002

NEW DATASHEET ACCORDING TO PCN DSG/CT/0C23.

ABSOLUTE MAXIMUN RATINGS

IRF520

THERMAL DATA

Rthj-case Rthj-amb T _l	Thermal Resistance Junction-case Thermal Resistance Junction-ambient Maximum Lead Temperature For Soldering Purpose	Max Max	2.5 62.5 300	°C/W °C/W °C
''	Maximum Ecad Temperature For Coldening Fulpose		500	U

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0$	60			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating T _C = 100°C			1 10	μΑ μΑ
IGSS	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20 V			±100	nA

ON (*)

Symbol	Parameter	Test C	Test Conditions			Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 250 μA	2	3	4	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10 V	I _D = 7 A	0	0.115	0.27	Ω
DYNAMIC			-*	er	¥		

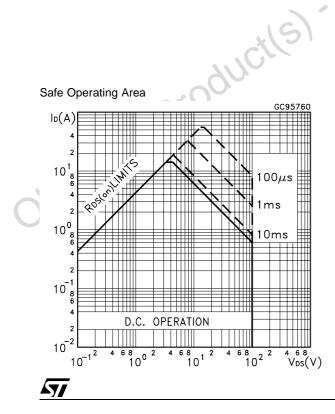
DYNAMIC

19

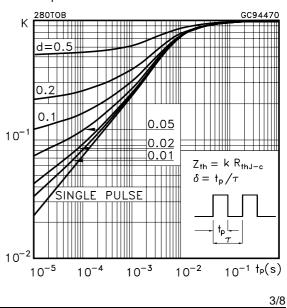
ELECTRICAL CHARACTERISTICS (continued)

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time			16 25		ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} = 80V I _D = 10A V _{GS} = 10V		16 4 5	22	nC nC nC

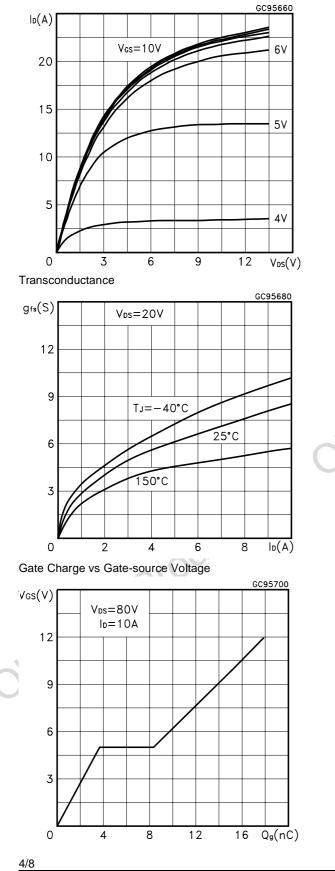

SWITCHING OFF

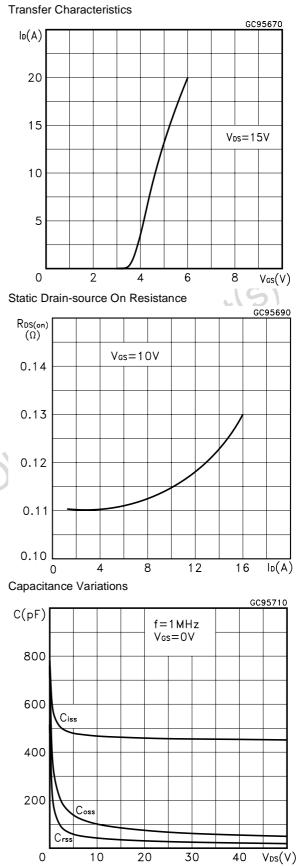
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)} t _f	Turn-off Delay Time Fall Time			32 8		ns ns

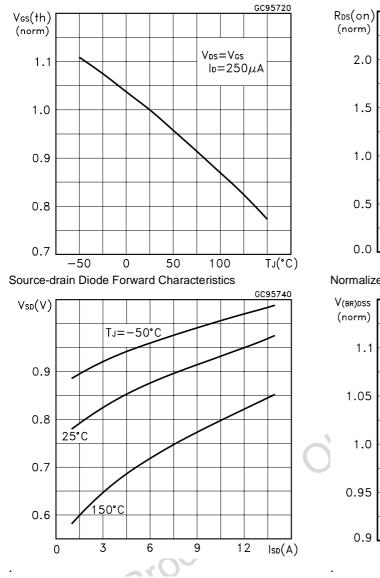

SOURCE DRAIN DIODE

Symbol	Parameter	Test Co	Test Conditions		Тур.	Max.	Unit
I _{SD} I _{SDM} (₀)	Source-drain Current Source-drain Current (pulsed)			Ó	00	10 40	A A
V_{SD} (*)	Forward On Voltage	I _{SD} = 10 A	$V_{GS} = 0$	N N		1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 10 \text{ A}$ $V_{DD} = 40 \text{ V}$ (see test circuit	di/dt = 100A/µs T _j = 150°C it, Figure 5)	0.	95 230 5		ns nC A

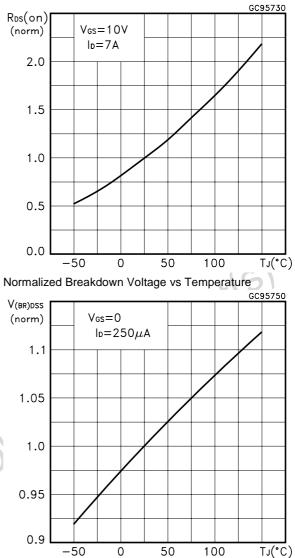
(*)Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %.
(•)Pulse width limited by safe operating area.




Thermal Impedance

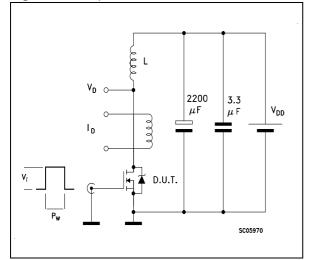

IRF520

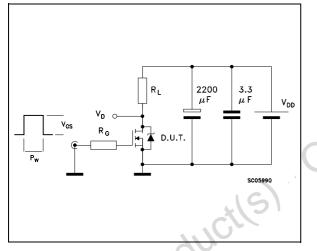
Output Characteristics



51

Normalized Gate Threshold Voltage vs Temperature


Normalized on Resistance vs Temperature


57

IRF520

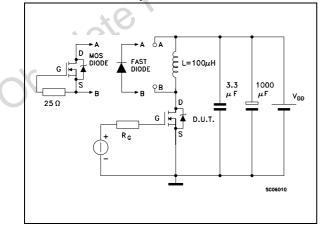

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuits For Resistive Load

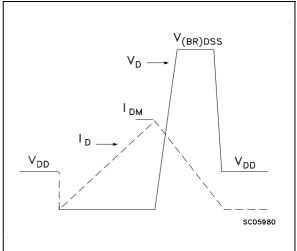
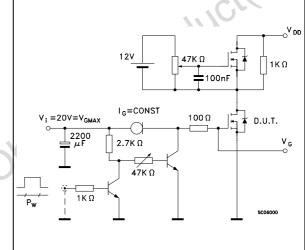
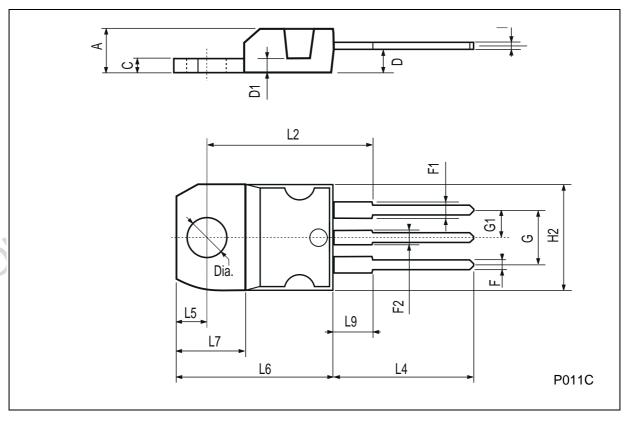


Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times



6/8

Fig. 2: Unclamped Inductive Waveform


Fig. 4: Gate Charge test Circuit

DIM.		mm			inch	
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	4.40		4.60	0.173		0.181
С	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
Е	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.4		2.7	0.094		0.106
H2	10.0		10.40	0.393		0.409
L2		16.4			0.645	
L4	13.0		14.0	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.2		6.6	0.244		0.260
L9	3.5		3.93	0.137		0.154
DIA.	3.75		3.85	0.147		0.151

TO-220 MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information not or any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as scritical components in life support devices or systems without express written approval of STMicroelectronics.

All other names are the property of their respective owners.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

8/8