5V ECL 4:1 Differential Multiplexer

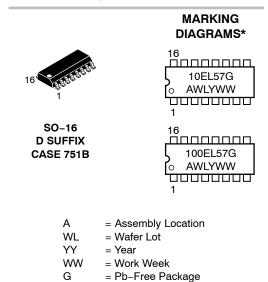
Description

The MC10/100EL57 is a fully differential 4:1 multiplexer. By leaving the SEL1 line open (pulled LOW via the input pulldown resistors) the device can also be used as a differential 2:1 multiplexer with SEL0 input selecting between D0 and D1.

The SEL1 is the most significant select line. The binary number applied to the select inputs will select the same numbered data input (i.e., 00 selects D0).

Multiple V_{BB} outputs are provided for single-ended or AC coupled interfaces. The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μ F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

The 100 Series contains temperature compensation.


Features

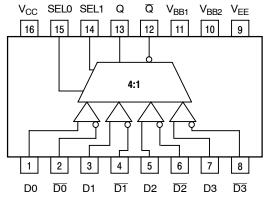
- Useful as Either 4:1 or 2:1 Multiplexer
- V_{BB} Output for Single-Ended Operation
- PECL Mode Operating Range: $V_{CC} = 4.2 \text{ V}$ to 5.7 V with $V_{EE} = 0 \text{ V}$
- NECL Mode Operating Range: $V_{CC} = 0 V$ with $V_{EE} = -4.2 V$ to -5.7 V
- Internal Input Pulldown Resistors on All Inputs
- Q Outputs Will Default LOW with Inputs Open or at $V_{\rm EE}$
- Pb–Free Packages are Available*

ON Semiconductor®

http://onsemi.com

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION


See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Table 1. ATTRIBUTES

Characteristi	cs	Value				
Internal Input Pulldown Resistor	75 KΩ					
Internal Input Pullup Resistor		N/A				
ESD Protection	Human Body Model Machine Model Charge Device Model	> 1 kV > 100 V > 2 kV				
Moisture Sensitivity (Note 1)		Level 1				
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in				
Transistor Count		109 Devices				
Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test						

1. For additional Moisture Sensitivity information, refer to Application Note AND8003/D.

Table 3. FUNCTION TABLE

SEL1*	SEL0*	DATA OUT
L	L	D0
L	Н	D1
н	L	D2
Н	Н	D3

* Pin will default low when left open.

Figure 1. Logic Diagram and Pinout Assignment

PIN	FUNCTION
D0–3, <u>D0–3</u>	ECL Diff Data Inputs
SEL0,1	ECL MUX Select Inputs
Q, <u>Q</u>	ECL Data Outputs
V_{BB1}, V_{BB2}	Reference Voltage Output
V _{CC}	Positive Supply
V_{EE}	Negative Supply

Table 2. PIN DESCRIPTION

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8	V
V_{EE}	NECL Mode Power Supply	$V_{CC} = 0 V$		-8	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{c} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$	6 -6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-16 SOIC-16	130 75	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-16	33 to 36	°C/W
T _{sol}	Wave Solder Pb Pb-Free	<2 to 3 sec @ 248°C <2 to 3 sec @ 260°C		265 265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 5. 10EL SERIES PECL DC CHARACTERISTICS V	/ _{CC} = 5.0 V; V _{EE} = 0 V (Note 1)
--	---

			-40°C		25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current			24			24			24	mA
V _{OH}	Output HIGH Voltage (Note 5)	3920	4010	4110	4020	4105	4190	4090	4185	4280	mV
V _{OL}	Output LOW Voltage (Note 2)	3050	3200	3350	3050	3210	3370	3050	3227	3405	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	3770		4110	3870		4190	3940		4280	mV
VIL	Input LOW Voltage (Single-Ended)	3050		3500	3050		3520	3050		3555	mV
V_{BB}	Output Voltage Reference	3.57		3.7	3.65		3.75	3.69		3.81	V
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	2.5		4.6	2.5		4.6	2.5		4.6	V
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	0.5			0.5			0.3			μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.06 V / -0.5 V.
Outputs are terminated through a 50 Ω resistor to V_{CC} - 2.0 V.
V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

			−40°C		25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current			24			24			24	mA
V _{OH}	Output HIGH Voltage (Note 5)	-1080	-990	-890	-980	-895	-810	-910	-815	-720	mV
V _{OL}	Output LOW Voltage (Note 5)	-1950	-1800	-1650	-1950	-1790	-1630	-1950	-1773	-1595	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1230		-890	-1130		-810	-1060		-720	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-1950		-1500	-1950		-1480	-1950		-1445	mV
V_{BB}	Output Voltage Reference	-1.43		-1.30	-1.35		-1.25	-1.31		-1.19	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 6)	-2.5		-0.4	-2.5		-0.4	-2.5		-0.4	V
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	0.5			0.5			0.3			μA

Table 6. 10EL SERIES NECL DC CHARACTERISTICS V_{CC} = 0 V; V_{EE} = -5.0 V (Note 4)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

4. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.06 V / –0.5 V.

5. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V. 6. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPPmin and 1 V.

			–40°C		25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current			24			24			27	mA
V _{OH}	Output HIGH Voltage (Note 8)	3915	3995	4120	3975	4045	4120	3975	4050	4120	mV
V _{OL}	Output LOW Voltage (Note 8)	3170	3305	3445	3190	3295	3380	3190	3295	3380	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	3835		4120	3835		4120	3835		4120	mV
V _{IL}	Input LOW Voltage (Single-Ended)	3190		3525	3190		3525	3190		3525	mV
V _{BB}	Output Voltage Reference	3.62		3.74	3.62		3.74	3.62		3.74	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 9)	2.5		4.6	2.5		4.6	2.5		4.6	V
IIH	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	0.5			0.5			0.5			μΑ

Table 7. 100EL SERIES PECL DC CHARACTERISTICS V_{CC} = 5.0 V; V_{EE} = 0 V (Note 7)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

7. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.8 V / -0.5 V. 8. Outputs are terminated through a 50 Ω resistor to V_{CC} - 2.0 V.

V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

			−40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	
I_{EE}	Power Supply Current			24			24			27	mA	
V _{OH}	Output HIGH Voltage (Note 11)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV	
V _{OL}	Output LOW Voltage (Note 11)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV	
V _{IH}	Input HIGH Voltage (Single-Ended)	-1165		-880	-1165		-880	-1165		-880	mV	
V _{IL}	Input LOW Voltage (Single-Ended)	-1810		-1475	-1810		-1475	-1810		-1475	mV	
V_{BB}	Output Voltage Reference	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V	
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 12)	-2.5		-0.4	-2.5		-0.4	-2.5		-0.4	V	
I _{IH}	Input HIGH Current			150			150			150	μA	
IIL	Input LOW Current	0.5			0.5			0.5			μA	

Table 8. 100EL SERIES NECL DC CHARACTERISTICS V_{CC} = 0 V; V_{EE} = -5.0 V (Note 10)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

10. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.8 V / –0.5 V.

11. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V.

12. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

Table 9. AC CHARACTERISTICS V _C	$_{\rm CC} = 5.0 \text{ V}; \text{ V}_{\rm EE} = 0$) V or $V_{CC} = 0$ V; $V_{EE} =$	-5.0 V (Note 13)
--	---	-----------------------------------	------------------

	-40°C			25°C			85°C					
Symbol	Characte	eristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency			TBD			TBD			TBD		GHz
t _{PLH} t _{PHL}	Propagation Delay	DATA→Q/Q SEL→Q/Q	350 440		550 690	360 440		560 690	380 460		580 710	ps
t _{SKEW}	Input Skew	D _n , D _m to Q			100			100			100	ps
t _{JITTER}	Cycle-to-Cycle Jitte	r		TBD			TBD			TBD		ps
V _{PP}	Input Swing (Note 14	-)	150		1000	150		1000	150		1000	mV
t _r t _f	Output Rise/Fall Time (20% – 80%)	es Q	125		375	125		375	125		375	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

13.10 Series: V_{EE} can vary +0.06 V / -0.5 V.

100 Series: V_{EE} can vary +0.8 V / -0.5 V.

14. VPPmin is minimum input swing for which AC parameters guaranteed. The device has a DC gain of ~40.

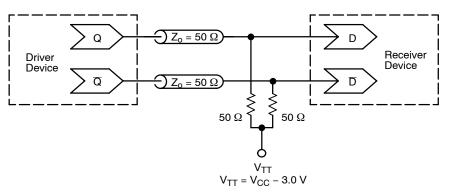
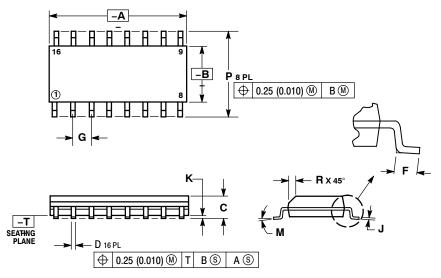


Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

ORDERING INFORMATION

Device	Package	Shipping [†]			
MC10EL57D	SOIC-16	48 Units / Rail			
MC10EL57DG	I0EL57DG SOIC-16 48 Units / Rail (Pb-Free)				
MC10EL57DR2	SOIC-16	2500 / Tape & Reel			
MC10EL57DR2G	SOIC-16 (Pb-Free)	2500 / Tape & Reel			
MC100EL57D	SOIC-16	48 Units / Rail			
MC100EL57DG	SOIC-16 (Pb-Free)	48 Units / Rail			
MC100EL57DR2	SOIC-16	2500 / Tape & Reel			
MC100EL57DR2G	SOIC-16 (Pb-Free)	2500 / Tape & Reel			


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes

AN1405/D	_	CL Clock Distribution Techniques	
AN1406/D	-	Designing with PECL (ECL at +5.0 V)	
AN1503/D	_	ECLinPS [™] I/O SPiCE Modeling Kit	
AN1504/D	_	Metastability and the ECLinPS Family	
AN1568/D	_	Interfacing Between LVDS and ECL	
AN1672/D	-	The ECL Translator Guide	
AND8001/D	-	Odd Number Counters Design	
AND8002/D	-	Marking and Date Codes	
AND8020/D	_	Termination of ECL Logic Devices	
AND8066/D	-	Interfacing with ECLinPS	
AND8090/D	_	AC Characteristics of ECL Devices	

PACKAGE DIMENSIONS

SO-16 **D SUFFIX** CASE 751B-05 ISSUE J

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIM	ETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.2	7 BSC	0.050 BSC		
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
М	0°	7°	0°	7°	
Ρ	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

ECLinPS is a trademark of Semiconductor Components INdustries, LLC (SCILLC).

ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product customer application. By customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products for any sother application in which the failure of the SCILLC product customer application in which the failure of the SCILLC product customer application in which the failure of the SCILLC product customer application is a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death applicatio experiment is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative