Tri-Mode 200 mA CMOS LDO Regulator with Enable

The NCP584 series of low drop out regulators are designed for portable battery powered applications which require precise output voltage accuracy, low quiescent current, and high ripple rejection. These devices feature an enable function which lowers current consumption significantly and are offered in the SOT23–5 package.

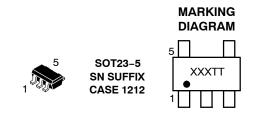
This series of devices have three modes. Chip Enable (CE mode), Fast Transient Mode (FT mode), and Low Power Mode (LP mode). Both the FT and LP mode are utilized via the ECO pin.

Features

- Tri-mode Operation
- Low Dropout Voltage of 400 mV at 200 mA, Output Voltage = 0.9 V
 300 mV at 200 mA, Output Voltage = 1.2 V
 200 mV at 200 mA, Output Voltage = 1.8 V
- Excellent Line Regulation of 0.05%/V (0.10% LP Mode)
- Excellent Load Regulation of 10 mV (20 mV FT Mode)
- High Output Voltage Accuracy of ±2% (±3% LP mode)
- Ultra-Low Iq Current of:

3.5 μA (LP mode, Output Voltage \leq 1.5 V) 40 μA (FT mode)

- Very Low Shutdown Current of 0.1 µA
- Excellent Power Supply Rejection Ratio of 75 dB at f = 1.0 kHz
- Low Temperature Drift Coefficient on the Output Voltage of ± 100 ppm/°C
- Fold Back Protection Circuit
- Input Voltage up to 6.5 V
- These are Pb-Free Devices


Typical Applications

- Portable Equipment
- Hand-Held Instrumentation
- Camcorders and Cameras

ON Semiconductor®

http://onsemi.com

XXX = Specific Device Code TT = Traceability Information

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 13 of this data sheet.

*Additional voltage options may be available between 0.8 V and 3.3 V in 100 mV steps.

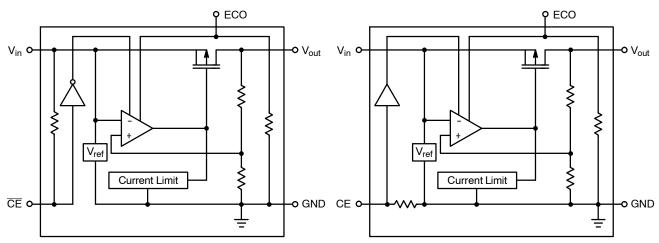


Figure 1. Simplified Block Diagram for Active Low

Figure 2. Simplified Block Diagram for Active High

PIN FUNCTION DESCRIPTION

SOT23-5	Pin Name	Description	
1	V _{in}	Power supply input voltage.	
2	GND	Power supply ground.	
3	CE or CE	Chip enable pin.	
4	ECO	Mode alternative pin. (V _{ECO} = V _{in} for FT mode; V _{ECO} = GND for LP mode)	
5	V _{out}	Regulated output voltage.	

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage	V _{in}	6.5	V
Input Voltage (CE or CE Pin)	V _{CE}	-0.3 to V _{in} +0.3	V
Input Voltage (ECO Pin)	V _{ECO}	-0.3 to V _{in} +0.3	V
Output Voltage	V _{out}	-0.3 to V _{in} +0.3	V
Output Current	I _{out}	250	mA
Power Dissipation	P _D	250	mW
ESD Capability, Human Body Model, C = 100 pF, R = 1.5 k Ω	ESD _{HBM}	1000	V
ESD Capability, Machine Model, C = 200 pF, R = 0 Ω	ESD _{MM}	150	V
Operating Ambient Temperature Range	T _A	-40 to +85	°C
Maximum Junction Temperature	T _{J(max)}	125	°C
Storage Temperature Range	T _{stg}	-55 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ELECTRICAL CHARACTERISTICS ($V_{in} = V_{out} + 1.0 \text{ V}, T_A = 25^{\circ}\text{C}, \text{ unless otherwise noted.}$)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Voltage	V _{in}	1.4	-	6.0	V
Output Voltage (1.0 μ A \leq I $_{out}$ \leq 30 mA) V $_{ECO}$ = V $_{in}$ V $_{ECO}$ = GND	V _{out}	V _{out} x 0.980 V _{out} x 0.970	1 -	V _{out} x 1.020 V _{out} x 1.030	V
	Reg _{line}	- 1	0.05 0.10	0.20 0.30	%/V
	Reg _{load}	- -	20 10	40 40	mV
$\begin{aligned} & \text{Dropout Voltage (I}_{\text{out}} = 200 \text{ mA)} \\ & V_{\text{out}} = 0.9 \text{ V} \\ & 1.2 \text{ V} \leq V_{\text{out}} \leq 1.5 \text{ V} \\ & 1.8 \text{ V} \leq V_{\text{out}} \leq 2.5 \text{ V} \\ & 2.6 \text{ V} \leq V_{\text{out}} \leq 3.3 \text{ V} \end{aligned}$	V _{DO}	- - - -	0.40 0.30 0.20 0.10	0.70 0.50 0.30 0.20	V
$\begin{aligned} &\text{Quiescent Current (I}_{out} = 0 \text{ mA)} \\ &\text{FT Mode, V}_{ECO} = V_{in} \\ &\text{LP Mode, V}_{ECO} = GND \\ &\text{V}_{out} \leq 1.5 \text{ V} \\ &\text{V}_{out} \geq 1.8 \text{ V} \end{aligned}$	Iq	- - -	40 3.5 4.5	70 6.0 8.0	μΑ
Output Current ($V_{in} - V_{out} = 0.5 \text{ V}$) $V_{in} \ge 1.5 \text{ V}$, $V_{out} = 0.9 \text{ V}$	l _{out}	200	-	-	mA
Shutdown Current (V _{CE} = V _{in})	I _{SD}	-	0.1	1.0	μΑ
Output Short Circuit Current (Vout = 0 V)	I _{lim}	-	50	-	mA
Enable Input Threshold Voltage High Low	Vth _{enh} Vth _{enl}	1.0 0	- -	V _{in} 0.3	V
Ripple Rejection $ (I_{out} = 30 \text{ mA, } V_{out} = 0.9 \text{ V, } V_{in} - V_{out} = 1.0 \text{ V}) $ $ f = 120 \text{ Hz} $ $ f = 1.0 \text{ kHz} $ $ f = 10 \text{ kHz} $	RR	- - -	75 75 65	- - -	dB
Output Noise Voltage (BW = 10 Hz to 100 kHz	Vn	_	30	_	μVrms
Output Voltage Temperature Coefficient ($I_{out} = 30 \text{ mA}, -40^{\circ}\text{C} \le T_{A} \le 85^{\circ}\text{C}$)	$\Delta V_{out}/\Delta T$	-	±100	-	ppm/°C

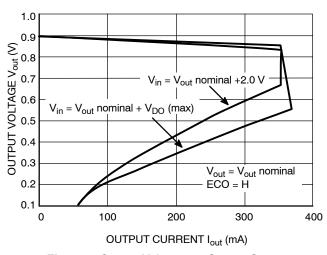


Figure 3. Output Voltage vs. Output Current

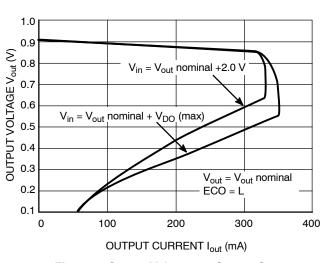


Figure 4. Output Voltage vs. Output Current

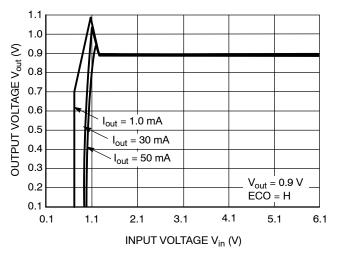


Figure 5. Output Voltage vs. Input Voltage

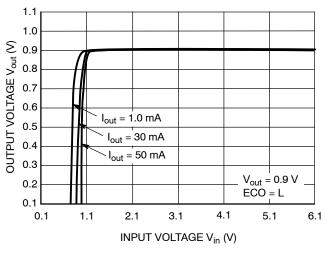


Figure 6. Output Voltage vs. Input Voltage

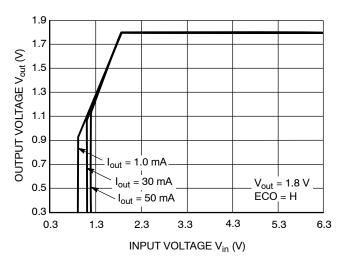


Figure 7. Output Voltage vs. Input Voltage

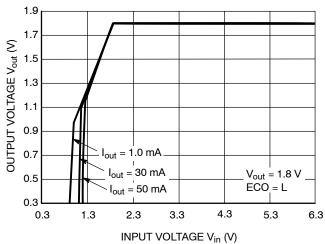


Figure 8. Output Voltage vs. Input Voltage

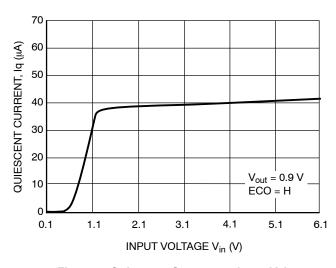


Figure 9. Quiescent Current vs. Input Voltage

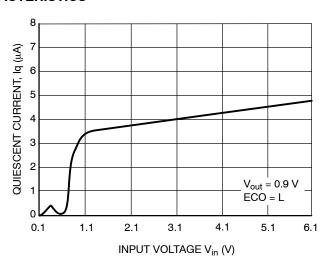


Figure 10. Quiescent Current vs. Input Voltage

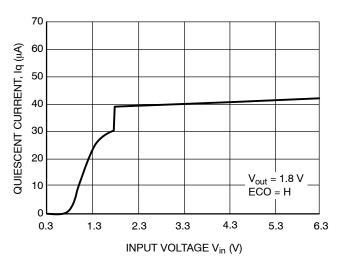


Figure 11. Quiescent Current vs. Input Voltage

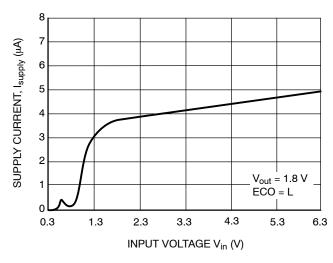


Figure 12. Quiescent Current vs. Input Voltage

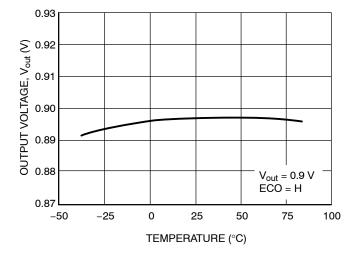


Figure 13. Output Voltage vs. Temperature

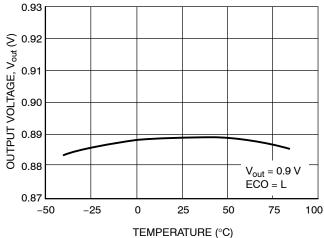
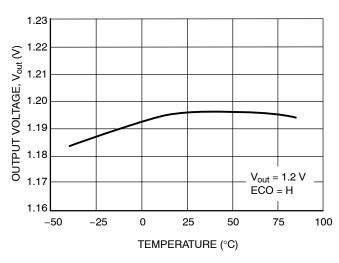



Figure 14. Output Voltage vs. Temperature

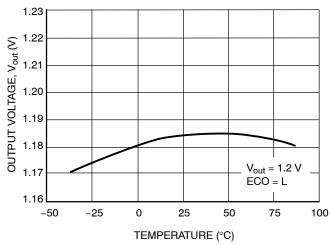
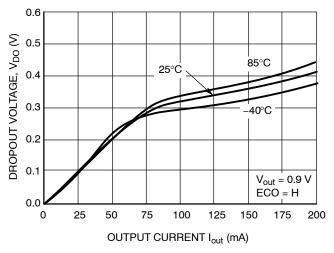



Figure 15. Output Voltage vs. Temperature

Figure 16. Output Voltage vs. Temperature

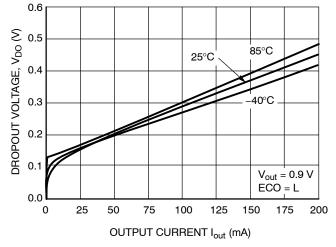
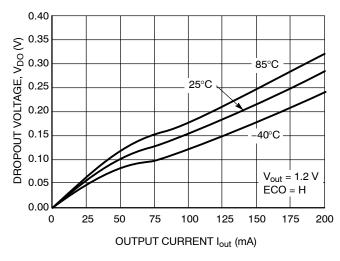



Figure 17. Dropout Voltage vs. Output Current

Figure 18. Dropout Voltage vs. Output Current

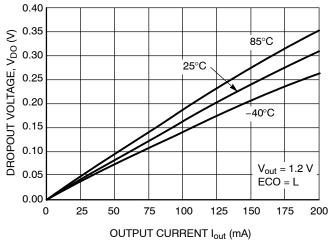
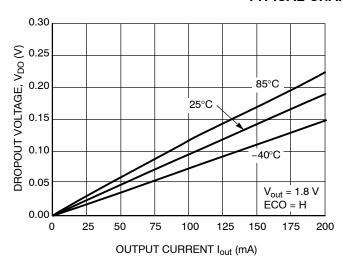
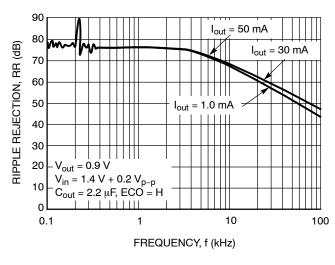



Figure 19. Dropout Voltage vs. Output Current


Figure 20. Dropout Voltage vs. Output Current

0.30 DROPOUT VOLTAGE, V_{DO} (V) 0.25 85°C 0.20 25°C 0.15 0.10 40°C 0.05 V_{out} = 1.8 V ECO = L 25 100 125 150 200 175 OUTPUT CURRENT Iout (mA)

Figure 21. Dropout Voltage vs. Output Current

Figure 22. Dropout Voltage vs. Output Current

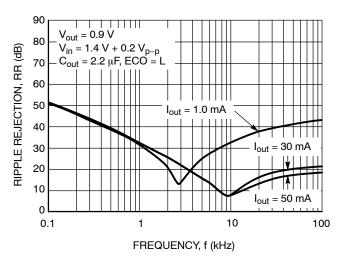
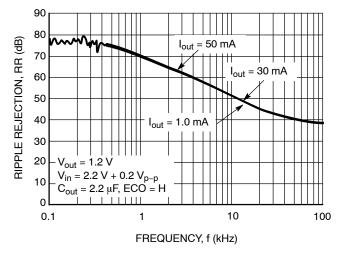



Figure 23. Ripple Rejection vs. Frequency

Figure 24. Ripple Rejection vs. Frequency

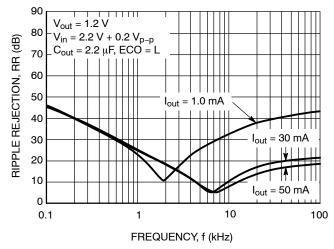


Figure 25. Ripple Rejection vs. Frequency

Figure 26. Ripple Rejection vs. Frequency

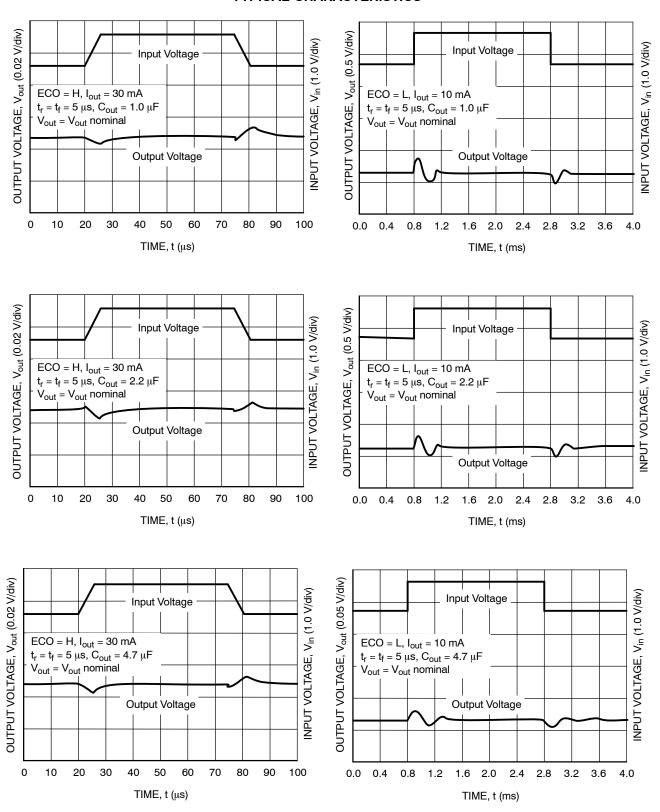


Figure 27. Input Transient Response

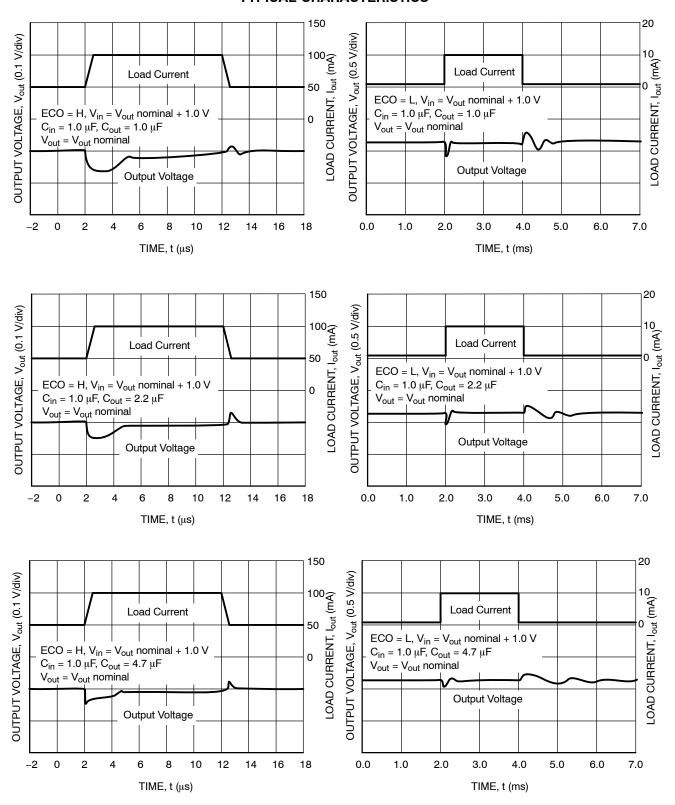


Figure 28. Load Transient Response

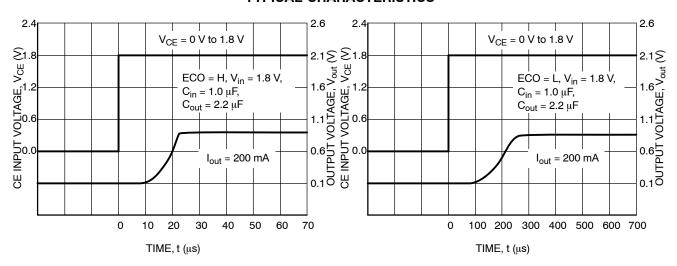


Figure 29. Turn-On/Off Speed with CE Pin (Vout = 0.9 V)

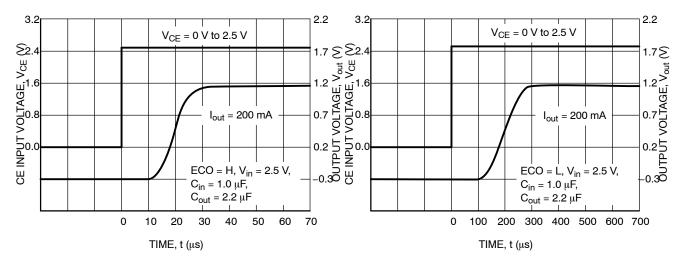


Figure 30. Turn-On/Off Speed with CE Pin (V_{out} = 1.2 V)

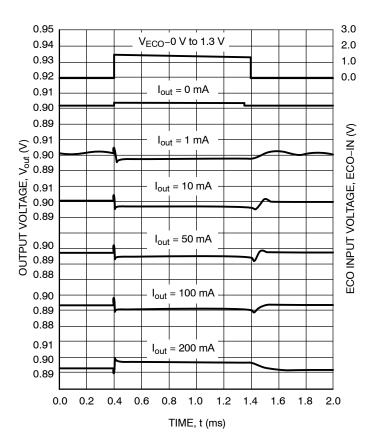


Figure 31. Output Voltage at Mode Alternative Point (C_{in} = 1.0 μ F, C_{out} = 2.2 μ F, 8.0 V, V_{out} = 0.9 V)

APPLICATION INFORMATION

Input Decoupling

A 1.0 μF tantalum capacitor is the recommended value to be connected between V_{in} and GND. For PCB layout considerations, the traces of V_{in} and GND should be sufficiently wide in order to minimize noise and prevent unstable operation.

Output Decoupling

It is recommended to use a 2.2 μ F or higher tantalum capacitor on the V_{out} pin. For better performance, select a tantalum capacitor with low Equivalent Series Resistance (ESR). If you use a tantalum type capacitor with high ESR

value of this capacitor, output might be unstable. For a ceramic type capacitor it is recommended connection about 1 Ω resistor in series for the stability of output voltage. The relation between Output Current of regulator and ESR of an output capacitor is shown in Figures 32 to 34. Those charts show minimal value of ESR for stable output voltage in Fast Transient mode. The minimal ESR of an output ceramic capacitor in Low Power mode is $40~\text{m}\Omega$ for all output voltages. For PCB layout considerations, place the output capacitor close to the output pin and keep the leads short as possible.

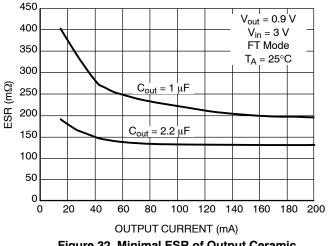


Figure 32. Minimal ESR of Output Ceramic Capacitor vs. Output Current

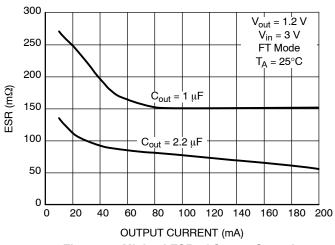


Figure 33. Minimal ESR of Output Ceramic Capacitor vs. Output Current

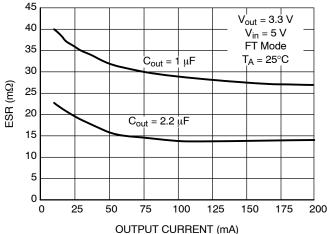


Figure 34. Minimal ESR of Output Ceramic Capacitor vs. Output Current

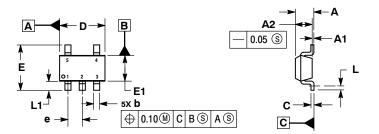
ORDERING INFORMATION

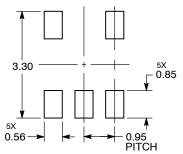
Device	Output Type / Features	Nominal Output Voltage	Marking	Package	Shipping [†]
NCP584HSN09T1G	Active High, LP and FT Mode	0.9	109	SOT23-5 (Pb-Free)	3000 / Tape & Reel
NCP584HSN12T1G	Active High, LP and FT Mode	1.2	112	SOT23-5 (Pb-Free)	3000 / Tape & Reel
NCP584HSN15T1G	Active High, LP and FT Mode	1.5	115	SOT23-5 (Pb-Free)	3000 / Tape & Reel
NCP584HSN18T1G	Active High, LP and FT Mode	1.8	118	SOT23-5 (Pb-Free)	3000 / Tape & Reel
NCP584HSN25T1G	Active High, LP and FT Mode	2.5	125	SOT23-5 (Pb-Free)	3000 / Tape & Reel
NCP584HSN26T1G	Active High, LP and FT Mode	2.6	126	SOT23-5 (Pb-Free)	3000 / Tape & Reel
NCP584HSN28T1G	Active High, LP and FT Mode	2.8	128	SOT23-5 (Pb-Free)	3000 / Tape & Reel
NCP584HSN30T1G	Active High, LP and FT Mode	3.0	130	SOT23-5 (Pb-Free)	3000 / Tape & Reel
NCP584HSN31T1G	Active High, LP and FT Mode	3.1	131	SOT23-5 (Pb-Free)	3000 / Tape & Reel
NCP584HSN33T1G	Active High, LP and FT Mode	3.3	133	SOT23-5 (Pb-Free)	3000 / Tape & Reel
NCP584LSN09T1G	Active Low, LP and FT Mode	0.9	009	SOT23-5 (Pb-Free)	3000 / Tape & Reel
NCP584LSN12T1G	Active Low, LP and FT Mode	1.2	012	SOT23-5 (Pb-Free)	3000 / Tape & Reel
NCP584LSN18T1G	Active Low, LP and FT Mode	1.8	018	SOT23-5 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Other voltages are available. Consult your ON Semiconductor representative.

MECHANICAL CASE OUTLINE


PACKAGE DIMENSIONS



SOT-23 5-LEAD CASE 1212-01 **ISSUE A**

DATE 28 JAN 2011

RECOMMENDED **SOLDERING FOOTPRINT***

DIMENSIONS: MILLIMETERS

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
 ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSIONS: MILLIMETERS.
 3. DATUM C IS THE SEATING PLANE.

	MILLIMETERS		
DIM	MIN MAX		
Α		1.45	
A1	0.00	0.10	
A2	1.00	1.30	
b	0.30 0.5		
С	0.10	0.25	
D	2.70	3.10	
Е	2.50	3.10	
E1	1.50 1.80		
е	0.95 BSC		
L	0.20		
L1	0.45	0.75	

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

= Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DC	CUMENT NUMBER:	98ASH70518A	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
	DESCRIPTION:	SOT-23 5-LEAD		PAGE 1 OF 1

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer p

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

onsemi Website: www.onsemi.com