STF140N8F7

N-channel 80 V, 3.5 mΩ typ., 64 A STripFET™ F7 Power MOSFET in a TO-220FP package

Datasheet - production data

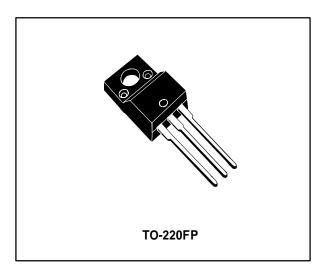
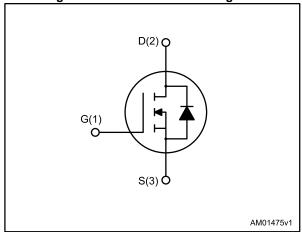



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ΙD	Ртот
STF140N8F7	80 V	$4.3~\text{m}\Omega$	64 A	35 W

- Among the lowest R_{DS(on)} on the market
- Excellent figure of merit (FoM)
- Low Crss/Ciss ratio for EMI immunity
- High avalanche ruggedness

Applications

Switching applications

Description

This N-channel Power MOSFET utilizes STripFET™ F7 technology with an enhanced trench gate structure that results in very low onstate resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Table 1: Device summary

Order code	Marking	Package	Packaging
STF140N8F7	140N8F7	TO-220FP	Tube

October 2014 DocID023888 Rev 3 1/12

Contents STF140N8F7

Contents

1	Electrical ratings					
2	Electric	cal characteristics	4			
	2.1	Electrical characteristics (curves)	5			
3	Test cir	cuits	7			
4	Packag	e mechanical data	8			
	4.1	TO-220FP package information	9			
5	Revisio	n history	11			

STF140N8F7 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{DS}	Drain-source voltage	80	V
V _G s	Gate-source voltage	±20	V
I _D	Drain current (continuous) at T _C = 25 °C	64 (1)	Α
I _D	Drain current (continuous) at T _C = 100 °C	45 ⁽¹⁾	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	256	Α
Ртот	Total dissipation at $T_C = 25$ °C	35	W
E _{AS} (3)	Single pulse avalanche energy		mJ
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s, T_C = 25 °C)	2.5	kV
Tj	Operating junction temperature	-55 to	°C
T _{stg}	Storage temperature	175	

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	4.29	°C/W
R _{thj-amb} Thermal resistance junction-ambient		62.5	°C/W

⁽¹⁾Limited by package.

⁽²⁾Pulse width is limited by safe operating area.

 $^{^{(3)}}$ Starting Tj =25 °C, Id = 18.5 A, Vdd = 50 V

Electrical characteristics STF140N8F7

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 4: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0$, $I_D = 250 \mu A$	80			V
	Zoro goto voltogo	$V_{GS} = 0, V_{DS} = 80 \text{ V}$			1	μΑ
I _{DSS}	I _{DSS} Zero gate voltage Drain current	V _{GS} = 0, V _{DS} = 80 V, T _J =125 °C			10	μΑ
Igss	Gate-source leakage current	$V_{DS} = 0$, $V_{GS} = \pm 20 \text{ V}$			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2.5		4.5	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 32 A		3.5	4.3	mΩ

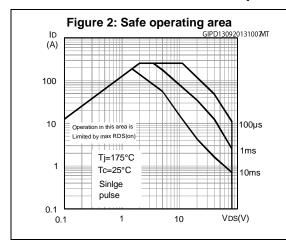
Table 5: Dynamic

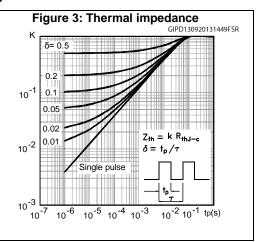
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance			6340	-	pF
Coss	Output capacitance	$V_{GS} = 0, V_{DS} = 40 \text{ V},$ f = 1 MHz		1195	-	pF
C_{rss}	Reverse transfer capacitance	1 – 1 1/11/12	-	105		pF
Q_g	Total gate charge		-	96	•	nC
Q_{gs}	Gate-source charge	$V_{DD} = 40 \text{ V}, I_{D} = 64 \text{ A},$ $V_{GS} = 10 \text{ V}$	-	30	1	nC
Q _{gd}	Gate-drain charge	VGS - 10 V	-	26	-	nC

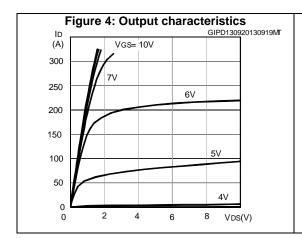
Table 6: Switching times

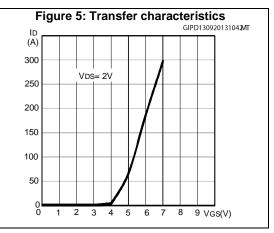
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	26	ı	ns
t _r	Rise time	$V_{DD} = 40 \text{ V}, I_D = 45 \text{ A R}_G = 4.7 \Omega,$	-	51	ı	ns
t _{d(off)}	Turn-off-delay time	V _{GS} = 10 V	-	82	ı	ns
tf	Fall time		-	44	-	ns

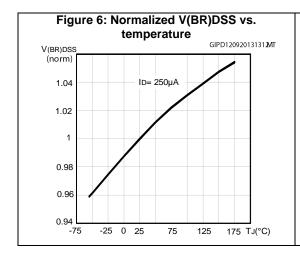
Table 7: Source drain diode

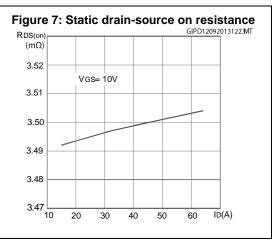

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		ı		64	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		256	Α
V _{SD} ⁽²⁾	Forward on voltage $V_{GS} = 0$, $I_{SD} = 64$ A		-		1.2	V
t _{rr}	Reverse recovery time		-	58		ns
Qrr	Reverse recovery charge $I_{SD} = 64 \text{ A}$, di/dt = 100 A/ μ s, $V_{DD} = 60 \text{ V}$, $T_i = 150 \text{ °C}$		ı	92		nC
I _{RRM}	Reverse recovery current	ט אין – טט אי, זין – זטט ט	-	3.2		Α

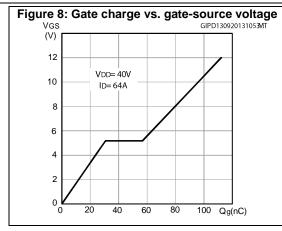

Notes:


⁽¹⁾Pulse width is limited by safe operating area


 $^{^{(2)}}$ Pulse test: pulse duration = 300 μ s, duty cycle 1.5%


2.1 Electrical characteristics (curves)

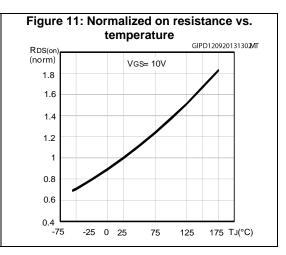


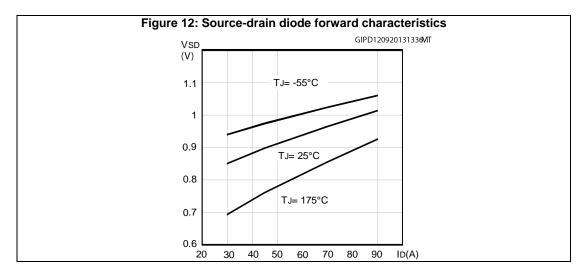


Electrical characteristics



Figure 10: Normalized gate threshold voltage vs. temperature


VGS(th)
(norm)
1.2


ID= 250μA

0.6

0.4

-75
-25
0
25
75
125
175
TJ(°C)

577

6/12

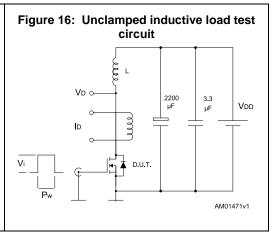
STF140N8F7 Test circuits

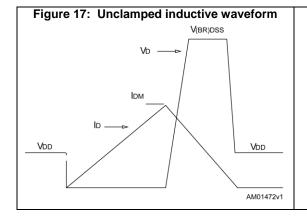
3 Test circuits

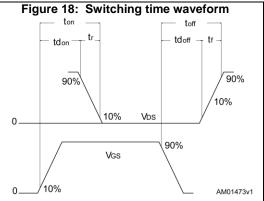
Figure 13: Switching times test circuit for resistive load

RL 2200 3.3 µF VDD

VGS RG D.U.T.

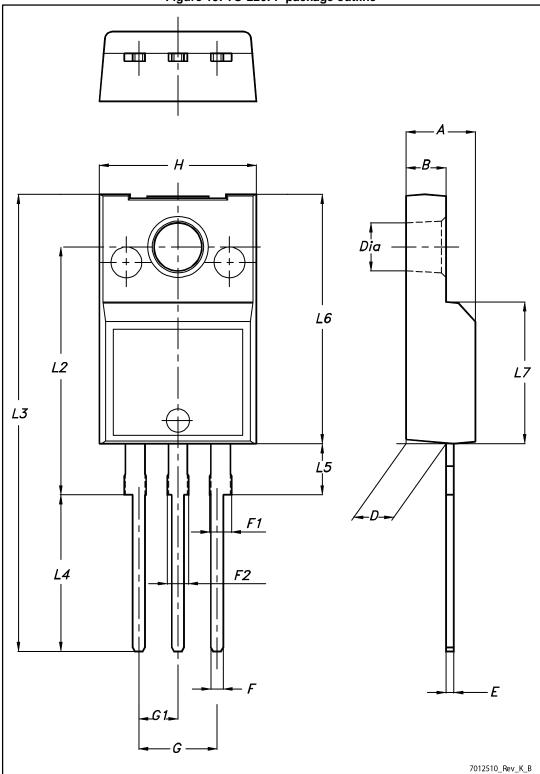

AM01468v1


Figure 14: Gate charge test circuit


VDD

VI = 20V = V GMAX

AM01469v1


4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

577

4.1 TO-220FP package information

Figure 19: TO-220FP package outline

577

Table 8: TO-220FP mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
A	4.4		4.6
В	2.5		2.7
D	2.5		2.75
Е	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2

STF140N8F7 Revision history

5 Revision history

Table 9: Document revision history

i data of 2 comment to the original to			
Date	Revision	Changes	
18-Sep-2013	1	First release.	
22-Aug-2014	2	 The part numbers STH140N8F7-2 and STP140N8F7 have been moved to a separate datasheet. Modified: not found Minor text changes 	
10-Oct-2014	3	Updated Figure 3: "Thermal impedance"	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics - All rights reserved

