

STB4N62K3, STD4N62K3

N-channel 620 V, 1.7 Ω typ., 3.8 A SuperMESH3™ Power MOSFETs in D²PAK and DPAK packages

Datasheet - production data

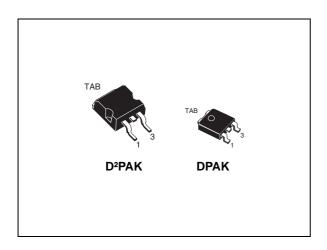
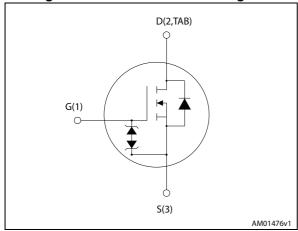



Figure 1. Internal schematic diagram

Features

Order codes	V _{DS}	R _{DS(on)} max.	I _D	P _W
STB4N62K3	620 V	2.0	201	70 W
STD4N62K3	620 V	2 32	3.8 A	70 VV

- 100% avalanche tested
- Extremely high dv/dt capability
- Gate charge minimized
- Very low intrinsic capacitance
- Improved diode reverse recovery characteristics
- Zener-protected

Applications

· Switching applications

Description

These SuperMESH3[™] Power MOSFETs are the result of improvements applied to STMicroelectronics' SuperMESH[™] technology, combined with a new optimized vertical structure. These devices boast an extremely low onresistance, superior dynamic performance and high avalanche capability, rendering them suitable for the most demanding applications.

Table 1. Device summary

Order code	Marking	Packages	Packaging
STB4N62K3	4N62K3	D²PAK	Tape and reel
STD4N62K3	4110213	DPAK	Tape and reer

September 2013 DocID18337 Rev 3 1/22

Contents

1	Electrical ratings	. 3
2	Electrical characteristics	
3	Test circuits	. 9
4	Package mechanical data	10
5	Packaging mechanical data	18
6	Revision history	21

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	620	V
V _{GS}	Gate- source voltage	± 30	V
I _D	Drain current (continuous) at T _C = 25 °C	3.8	А
I _D	Drain current (continuous) at T _C = 100 °C	2	А
I _{DM} ⁽¹⁾	Drain current (pulsed)	15.2	Α
P _{TOT}	Total dissipation at T _C = 25 °C	70	W
I _{AR}	Avalanche current, repetitive or not- repetitive (pulse width limited by T_j max)	3.8	А
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	115	mJ
V _{ESD(G-S)}	Gate source ESD(HBM-C = 100 pF, R = 1.5 k Ω)	2500	V
dv/dt (2)	Peak diode recovery voltage slope	12	V/ns
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s; Tc = 25 °C)		V
T _{stg}	Storage temperature	- 55 to 150	°C
Tj	Max. operating junction temperature	150	°C

^{1.} Pulse width limited by safe operating area.

Table 3. Thermal data

Symbol	Parameter	V	Unit	
Symbol	i didilictor	D ² PAK	DPAK	Onic
R _{thj-case}	Thermal resistance junction-case max		1.79	°C/W
R _{thj-pcb} (1)	Thermal resistance junction-pcb max	30	50	°C/W

^{1.} When mounted on 1inch² FR-4 board, 2 oz Cu.

^{2.} $I_{SD} \leq 3.8 \text{ A}, \text{ di/dt} = 400 \text{ A/}\mu\text{s}, V_{DD} = 80\% \text{ V}_{(BR)DSS}, \text{VDS peak} \leq \text{V(BR)DSS}.$

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4. On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0, I _D = 1 mA	620			V
	Zero gate voltage drain current	$V_{GS} = 0, V_{DS} = 620V$			1	μΑ
I _{DSS}		$V_{GS} = 0$ $V_{DS} = 620V, T_{C} = 125 °C$			50	μΑ
I _{GSS}	Gate-body leakage current	$V_{DS} = 0, V_{GS} = \pm 20 \text{ V}$			± 10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 50 \mu A$	3	3.75	4.5	V
R _{DS(on}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 1.9 A		1.7	2	Ω

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance			550		pF
C _{oss}	Output capacitance	$V_{DS} = 50 \text{ V, f} = 1 \text{ MHz,}$		42		pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0$		7		pF
C _{oss eq.} ⁽¹⁾	Equivalent output capacitance	$V_{DS} = 0$ to 496 V, $V_{GS} = 0$		27		pF
R_{G}	Intrinsic gate resistance	f = 1 MHz open drain	2	5	10	Ω
Qg	Total gate charge	V _{DD} = 496 V, I _D = 3.8 A,		22		nC
Q _{gs}	Gate-source charge	V _{GS} = 10 V		4		nC
Q _{gd}	Gate-drain charge	(see Figure 18)		13		nC

^{1.} $C_{\rm oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as $C_{\rm oss}$ when $V_{\rm DS}$ increases from 0 to 80% $V_{\rm DSS}$

577

Symbol

t_{d(on)}

 t_{r}

 $t_{d(off)}$

 t_f

Rise time

Fall time

Turn-off-delay time

Parameter Test conditions Min. Тур. Max. Unit Turn-on delay time 10 ns $V_{DD} = 300 \text{ V}, I_{D} = 1.9 \text{ A},$ 9 ns $R_G = 4.7 \Omega$, $V_{GS} = 10 V$

-

29

19

-

ns

ns

Table 6. Switching times

T-11- 7			100 - 100
Iahla /	Source	drain	ADAID

(see Figure 17)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		3.8	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		15.2	Α
V _{SD} (2)	Forward on voltage	$I_{SD} = 3.8 \text{ A}, V_{GS} = 0$	-		1.6	V
t _{rr}	Reverse recovery time	0.00 0.11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	-	220		ns
Q _{rr}	Reverse recovery charge	I _{SD} = 3.8 A, di/dt = 100 A/μs V _{DD} = 60 V (see <i>Figure 22</i>)	-	1.4		μC
I _{RRM}	Reverse recovery current	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	13		Α
t _{rr}	Reverse recovery time	I _{SD} = 3.8 A, di/dt = 100 A/μs	-	270		ns
Q _{rr}	Reverse recovery charge	$V_{DD} = 60 \text{ V}, T_j = 150 ^{\circ}\text{C}$	-	1.9		μC
I _{RRM}	Reverse recovery current	(see Figure 22)	-	14		Α

^{1.} Pulse width limited by safe operating area.

Table 8. Gate-source Zener diode

Symbol	Parameter	Test conditions	Min	Тур.	Max.	Unit
$V_{(BR)GSO}$	Gate-source breakdown voltage	$I_{GS} = \pm 1$ mA, $I_{D}=0$	30	-	-	V

The built-in back-to-back Zener diodes have been specifically designed to enhance not only the device's ESD capability, but also to make them capable of safely absorbing any voltage transients that may occasionally be applied from gate to source. In this respect, the Zener voltage is appropriate to achieve efficient and cost-effective protection of device integrity. The integrated Zener diodes thus eliminate the need for external components.

^{2.} Pulsed: Pulse duration = 300 µs, duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area for D2PAK

Figure 3. Thermal impedance for D²PAK

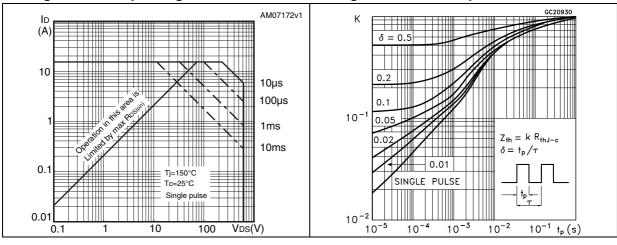


Figure 4. Safe operating area for DPAK

Figure 5. Thermal impedance for DPAK

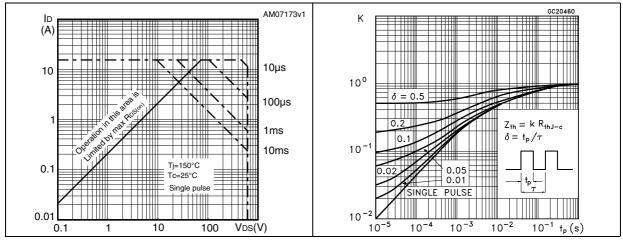


Figure 6. Output characteristics

Figure 7. Transfer characteristics

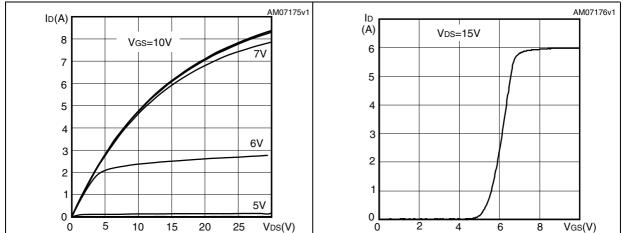
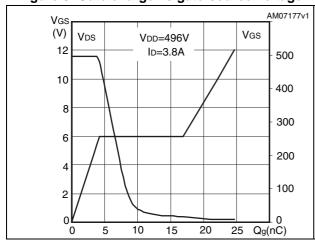



Figure 8. Gate charge vs gate-source voltage

Figure 9. Static drain-source on resistance

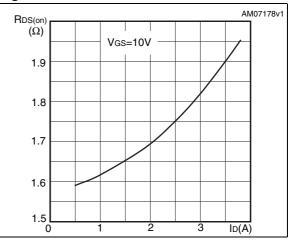
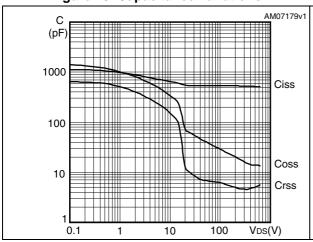



Figure 10. Capacitance variations

Figure 11. Output capacitance stored energy

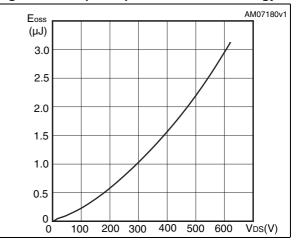
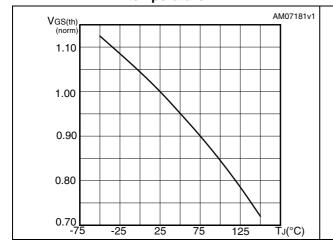



Figure 12. Normalized gate threshold voltage vs temperature

Figure 13. Normalized on-resistance vs temperature

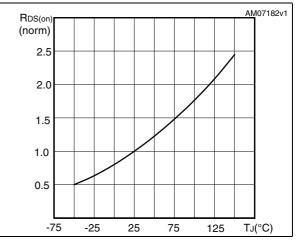
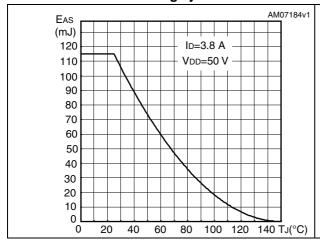



Figure 14. Maximum avalanche energy vs starting Tj

Figure 15. Normalized \mathbf{B}_{VDSS} vs temperature

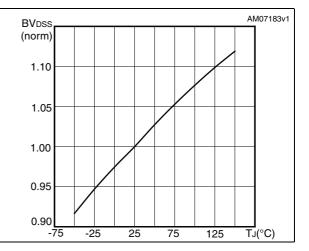
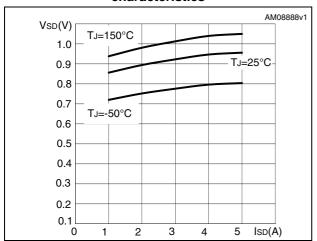



Figure 16. Source-drain diode forward characteristics

577

3 Test circuits

Figure 17. Switching times test circuit for resistive load

Figure 18. Gate charge test circuit

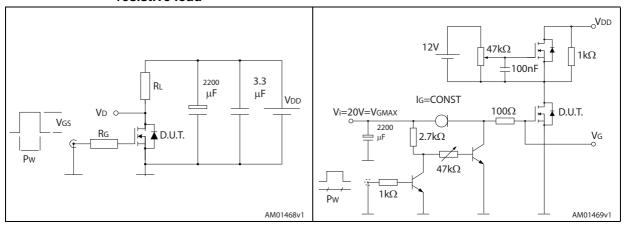


Figure 19. Test circuit for inductive load switching and diode recovery times

Figure 20. Unclamped Inductive load test circuit

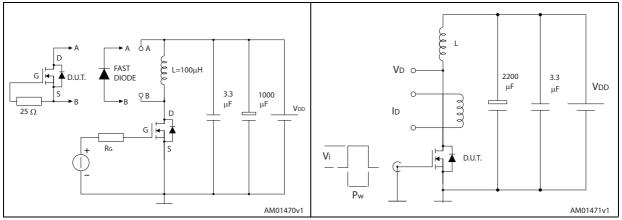
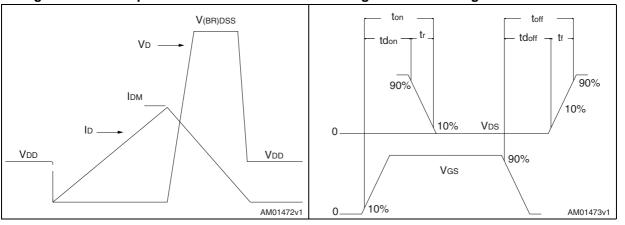



Figure 21. Unclamped inductive waveform

Figure 22. Switching time waveform

4 Package mechanical data

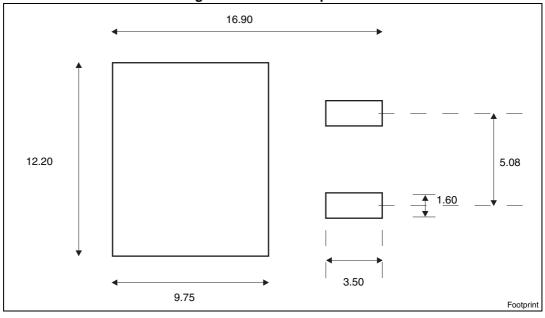
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

57/

Table 9. D²PAK (TO-263) mechanical data

Dim		mm				
Dim.	Min.	Тур.	Max.			
А	4.40		4.60			
A1	0.03		0.23			
b	0.70		0.93			
b2	1.14		1.70			
С	0.45		0.60			
c2	1.23		1.36			
D	8.95		9.35			
D1	7.50					
Е	10		10.40			
E1	8.50					
е		2.54				
e1	4.88		5.28			
Н	15		15.85			
J1	2.49		2.69			
L	2.29		2.79			
L1	1.27		1.40			
L2	1.30		1.75			
R		0.4				
V2	0°		8°			

SEATING PLANE
COPLANARITY A1


R

GAUGE PLANE
V2

0079457_T

Figure 23. D²PAK (TO-263) drawing

a. All dimension are in millimeters

57

Table 10. DPAK (TO-252) type A mechanical data

Dim	145.0 101.217111(1.0	mm	
Dim.	Min.	Тур.	Max.
Α	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1		5.10	
E	6.40		6.60
E1		4.70	
е		2.28	
e1	4.40		4.60
Н	9.35		10.10
L	1.00		1.50
(L1)		2.80	
L2		0.80	
L4	0.60		1.00
R		0.20	
V2	0°		8°

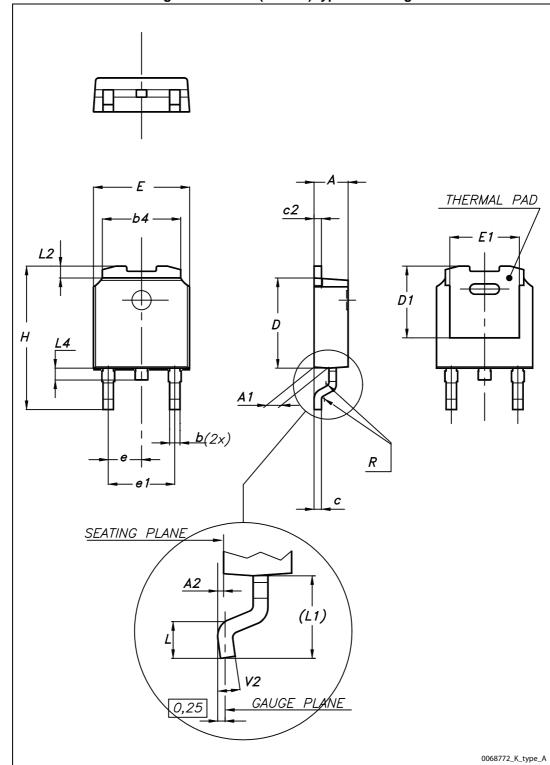


Figure 25. DPAK (TO-252) type A drawing

57

Table 11. DPAK (TO-252) type E mechanical data

Dim.	mm				
Dim.	Min.	Тур.	Max.		
А	2.18		2.39		
A2			0.13		
b	0.65		0.884		
b4	4.95		5.46		
С	0.46		0.61		
c2	0.46		0.60		
D	5.97		6.22		
D1	5.21				
E	6.35		6.73		
E1	4.32				
е		2.286			
e1		4.572			
Н	9.94		10.34		
L	1.50		1.78		
L1		2.74			
L2	0.89		1.27		
L4			1.02		

THERMAL PAD c2 E1 L2 D1 D b(2x)– e 1-С SEATING PLANE L1 GAUGE PLANE 0,508 0068772_K_type_E

Figure 26. DPAK (TO-252) type E drawing

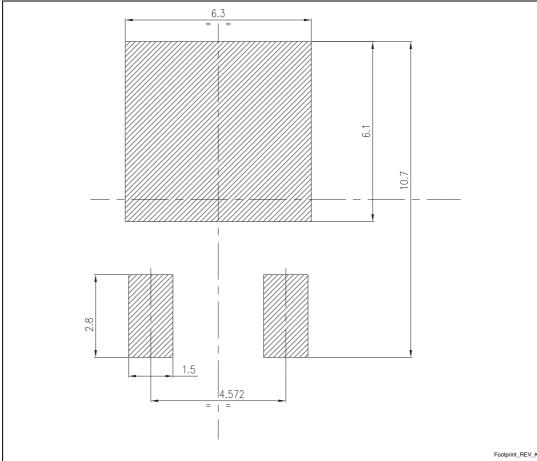


Figure 27. DPAK footprint (b)

b. All dimensions are in millimeters

Packaging mechanical data 5

Table 12. D²PAK (TO-263) tape and reel mechanical data

Таре				Reel		
Dim.	mm		Dim	mm		
	Min.	Max.	Dim.	Min.	Max.	
A0	10.5	10.7	А		330	
В0	15.7	15.9	В	1.5		
D	1.5	1.6	С	12.8	13.2	
D1	1.59	1.61	D	20.2		
Е	1.65	1.85	G	24.4	26.4	
F	11.4	11.6	N	100		
K0	4.8	5.0	Т		30.4	
P0	3.9	4.1				
P1	11.9	12.1		Base qty	1000	
P2	1.9	2.1		Bulk qty	1000	
R	50					
Т	0.25	0.35				
W	23.7	24.3				

Table 13. DPAK (TO-252) tape and reel mechanical data

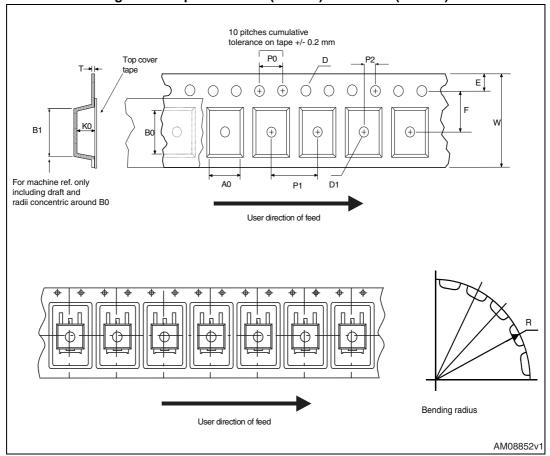

Tape				Reel		
Dim.	mm		Dim	mm		
	Min.	Max.	Dim.	Min.	Max.	
A0	6.8	7	Α		330	
В0	10.4	10.6	В	1.5		
B1		12.1	С	12.8	13.2	
D	1.5	1.6	D	20.2		
D1	1.5		G	16.4	18.4	
Е	1.65	1.85	N	50		
F	7.4	7.6	Т		22.4	
K0	2.55	2.75				
P0	3.9	4.1		Base qty.	2500	
P1	7.9	8.1		Bulk qty.	2500	

Table 13. DPAK (TO-252) tape and reel mechanical data (continued)

Таре			Reel		
m Dim		m	Dim.	mm	
Dim.	Min.	Max.	Dim.	Min.	Max.
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3			

Figure 28. Tape for D²PAK (TO-263) and DPAK (TO-252)

DocID18337 Rev 3

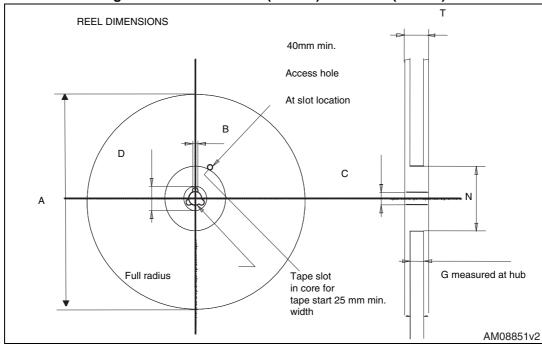


Figure 29. Reel for D²PAK (TO-263) and DPAK (TO-252)

577

6 Revision history

Table 14. Document revision history

Date	Revision	Changes
16-Dec-2010	1	First release.
26-Apr-2012	2	Added min and max values for R _G in <i>Table 5: Dynamic</i> and <i>Section 5: Packaging mechanical data</i> . Updated <i>Section 4: Package mechanical data</i> . Minor text changes.
09-Sep-2013	2013	

21/22

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

