LDO Regulator - Very Low I_{q,} RESET, Delay Time Select

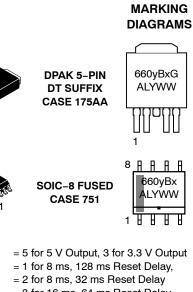
150 mA

The NCV8660B is a precision very low Iq low dropout voltage regulator. Quiescent currents as low as $28 \ \mu A$ typical make it ideal for automotive applications requiring low quiescent current with or without a load. Integrated control features such as Reset and Delay Time Select make it ideal for powering microprocessors.

It is available with a fixed output voltage of 5.0 V and 3.3 V and regulates within $\pm 2.0\%$.

Features

- Fixed Output Voltage of 5 V and 3.3 V
- $\pm 2.0\%$ Output Voltage up to V_{BAT} = 40 V
- Output Current up to 150 mA
- Microprocessor Compatible Control Functions:
 - Delay Time Select
 - ♦ RESET Output
- NCV Prefix for Automotive
 - Site and Change Control
 - AEC–Q100 Qualified
- Low Dropout Voltage
- Low Quiescent Current of 28 µA Typical
- Stable Under No Load Conditions
- Protection Features:
 - Thermal Shutdown
 - Short Circuit
- These are Pb–Free Devices


Applications

- Automotive:
 - Body Control Module
 - Instrument and Clusters
 - Occupant Protection and Comfort
 - Powertrain
- Battery Powered Consumer Electronics

ON Semiconductor®

www.onsemi.com

- = 3 for 16 ms, 64 ms Reset Delay = 4 for 32 ms, 128 ms Reset Delay
- = Assembly Location
- = Wafer Lot
- = Year

х

٧

А

L

Υ

- WW = Work Week
- G or = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the dimensions section on page 13 of this data sheet.

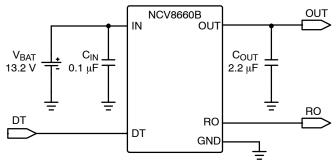


Figure 1. Application Diagram

PIN DESCRIPTIONS

Р	Pin		
DPAK	SOIC-8 FUSED	Symbol	Function
1	1	IN	Input Supply Voltage. 0.1 μ F bypass capacitor to GND at the IC.
2	2	R _O	Reset Output. CMOS compatible output. Goes low when V_{OUT} drops by more than 7% from nominal.
3, Tab	5–8	GND	Ground
4	3	DT	Reset Delay Time Select. Short to GND or connect to OUT to select time.
5	4	OUT	Regulated Voltage Output. 2.2 μ F to ground for typical applications.

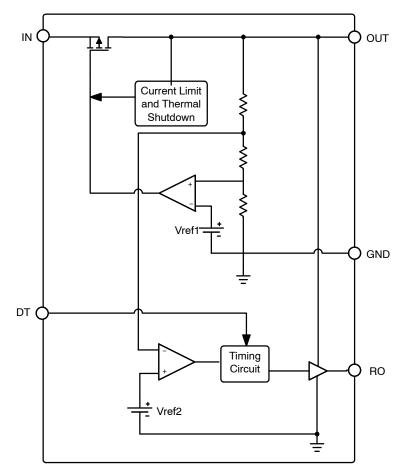


Figure 2. Block Diagram

ABSOLUTE MAXIMUM RATINGS

Rating		Symbol	Min	Max	Unit
Input Voltage (IN)	V _{IN}	-0.3	40	V	
Input Current	I _{IN}	-1.0	-	mA	
Output Voltage (OUT) DC Transient, t < 10 s (Note 1)		V _{OUT}	-0.3 -0.3	5.5 16	V
Output Current (OUT)		I _{OUT}	-1.0	Current Limited	mA
Storage Temperature Range		T _{STG}	-55	150	°C
DT (Reset Delay Time Select) Voltage (Note 2)		V _{DT}	-0.3	16	V
DT (Reset Delay Time Select) Current (Note 2)		I _{DT}	-1.0	1.0	mA
RO (Reset Output) Voltage DC Transient, t < 10 s	V _{RO}	-0.3 -0.3	5.5 16	V	
RO (Reset Output) Current		I _{RO}	-1.0	1.0	mA
ESD CAPABILITY					
ESD Capability, Human Body Model (Note 3)		ESD _{HB}	-2.0	2.0	kV
ESD Capability, Machine Model (Note 3)		ESD _{MM}	-200	200	V
ESD Capability, Charged Device Model (Note 3)		ESD _{CDM}	-1.0	1.0	kV
THERMAL RESISTANCE					
Junction-to-Case (Note 4)	DPAK 5	$R_{ ext{ heta}JC}$		15	°C/W
Junction-to-Ambient (Note 4)	DPAK 5	R_{\thetaJA}		66	°C/W
Junction-to-Tab (Note 4)	DPAK 5	$R_{ extsf{ heta}JT}$	2	4.0	°C/W
Junction-to-Ambient (Note 4)	SOIC-8 FUSED	$R_{ hetaJA}$	1	04	°C/W
Junction-to-Lead (pin 6) (Note 4)	SOIC-8 FUSED	R_{\thetaJT}		33	°C/W
LEAD SOLDERING TEMPERATURE AND MSL					
Moisture Sensitivity Level	DPAK 5 MSL 1 SOIC-8 FUSED 3			-	
Lead Temperature Soldering: SMD style only, Ref	SLD	_	265 peak	°C	

This device series incorporates ESD protection and is tested by the following methods: ESD HBM tested per AEC-Q100-002 (EIA/JESD22-A114) ESD MM tested per AEC-Q100-003 (EIA/JESD22-A115) ESD CDM tested per EIA/JESD22/C101, Field Induced Charge Model
Values represented typical steady-state thermal performance on 1 oz. copper FR4 PCB with 1 in² copper area.
Per IPC / JEDEC J-STD-020C.

OPERATING RANGE

Pin Symbol, Parameter	Symbol	Min	Max	Unit
V _{IN} , Input Voltage Operating Range	V _{IN}	4.5	40	V
Junction Temperature Range	TJ	-40	150	°C

$\textbf{ELECTRICAL CHARACTERISTICS 5.5 V < V_{IN} < 40 \text{ V}, \ -40^{\circ}\text{C} \leq T_J \leq +150^{\circ}\text{C}, \text{ unless otherwise specified}}$

Characteristic	Symbol	ol Conditions		Тур	Max	Unit		
GENERAL								
Quiescent Current	۱ _q	100 μ A < I _{OUT} < 150mA, V _{IN} = 13.2V, T _J = 25°C	-	25	30	μΑ		
		$100\mu A < I_{OUT} < 150 mA, V_{IN} = 13.2V, T_J \le 85^{\circ}C$	-	-	40			
Thermal Shutdown (Note 6)	T _{SD}		150	175	195	°C		
Thermal Hysteresis (Note 6)	T _{HYS}		-	25	-	°C		

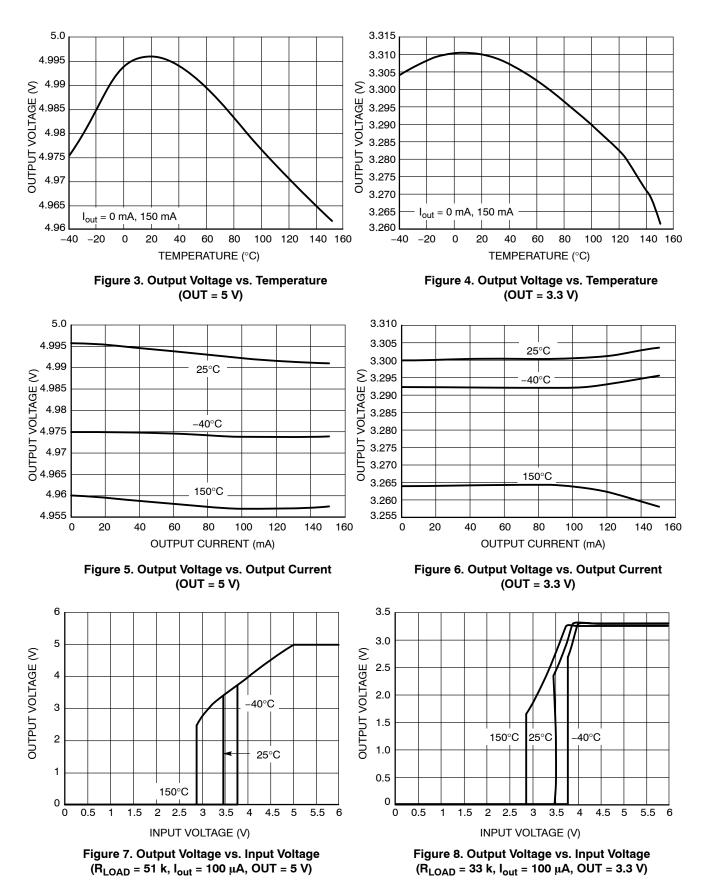
OUT

Output Voltage	V _{OUT}	6 V \leq V $_{IN}$ \leq 16 V, 0.1 mA \leq I_{OUT} \leq 150 mA	4.9	5.0	5.1	V
		$6 \text{ V} \le \text{V}_{\text{IN}} \le 40 \text{ V}, 0.1 \text{ mA} \le \text{I}_{\text{OUT}} \le 100 \text{ mA}$	4.9	5.0	5.1	
		5.6 V \leq V $_{IN}$ \leq 16 V, 0 mA \leq I $_{OUT}$ \leq 150 mA, $-40^\circ C \leq$ T $_J \leq$ +125 $^\circ C$	4.9	5.0	5.1	
Output Voltage	V _{OUT}	5.5 V \leq V _{IN} \leq 16 V, 0.1 mA \leq I _{OUT} \leq 150 mA	3.234	3.3	3.366	V
		5.5 V \leq V $_{IN}$ \leq 40 V, 0.1 mA \leq I_{OUT} \leq 100 mA	3.234	3.3	3.366	
Output Current Limit	I _{CL}	OUT = 96% x V _{OUT} nominal	205	-	525	mA
Output Current Limit, Short Circuit	I _{SCKT}	OUT = 0 V	205	-	525	mA
Load Regulation	ΔV_{OUT}	V_{IN} = 13.2 V, I_{OUT} = 0.1 mA to 150 mA	-40	10	40	mV
Line Regulation	ΔV_{OUT}	$I_{OUT} = 5 \text{ mA}, V_{IN} = 6 \text{ V to } 28 \text{ V}$	-20	0	20	mV
Dropout Voltage - 5.0 V Only	V _{DR}	I _{OUT} = 100 mA, (Note 7) V _{DR} = V _{IN} - V _{OUT} , (ΔV _{OUT} = -100 mV)	-	0.225	0.45	V
		I_{OUT} = 150 mA, (Note 7) V_{DR} = $V_{IN} - V_{OUT}$, (ΔV_{OUT} = -100 mV)	-	0.30	0.60	
Output Load Capacitance	CO	Output capacitance for stability	2.2	-	-	μF
Power Supply Ripple Rejection	PSRR	V _{IN} = 13.2 V, 0.5 V _{PP} , 100 Hz	_	60	_	dB

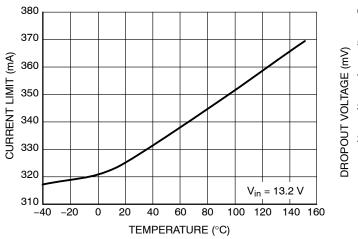
DT (Reset Delay Time Select)

Threshold Voltage High		2	-	-	V
Low		-	-	0.8	V
Input Current	DT = V _{OUT}	-	-	1.0	μΑ

RO, Reset Output


RESET Threshold	V _{Rf}	V _{OUT} decreasing		93	96	%V _{OUT}
RESET Threshold Hysteresis	V _{Rhys}		-	2.0	-	%V _{OUT}
RO Output Low	V _{RL}	10 k Ω RESET to OUT, V _{OUT} = 4.5 V	-	0.2	0.4	V
RO Output High (OUT-RO)	DUT-RO) V _{RH} 10 kΩ RESET to GND		V _{OUT} -0.4	V _{OUT} -0.2	V _{OUT}	V
Reset Reaction Time	t _{RR}	V _{OUT} into UV to RESET Low	16	25	38	μsec
Input Voltage Reset Threshold $V_{IN_{RT}}$ V_{IN} Decreasing, $V_{OUT} > V_{RT}$		V _{IN} Decreasing, V _{OUT} > V _{RT}	-	3.8	4.25	V

RESET Delay with DT Selection


Delay Time Out of RESETt _{dF} - 8 ms version- 16 ms version- 32 ms version- 64 ms version- 128 ms version- 128 ms version	V _{OUT} into regulation to RO High	5.0 10 20 40 80	8.0 16 32 64 128	11.5 23 46 92 184	msec
--	---	-----------------------------	------------------------------	-------------------------------	------

Not production tested, guaranteed by design.
Dropout at a given current level is defined as the voltage difference of V_{IN} to V_{OUT} with V_{IN} decreasing until the output drops by 100 mV.

TYPICAL OPERATING CHARACTERISTICS

TYPICAL OPERATING CHARACTERISTICS

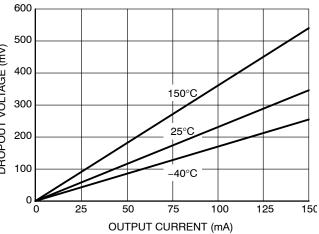


Figure 10. Dropout Voltage vs. Output Current

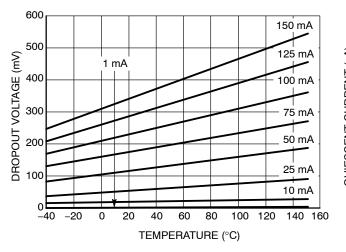


Figure 11. Dropout Voltage vs. Temperature

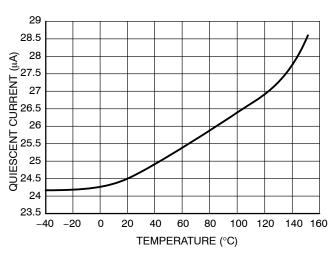
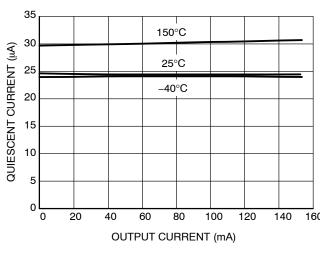



Figure 13. Quiescent Current vs. Temperature

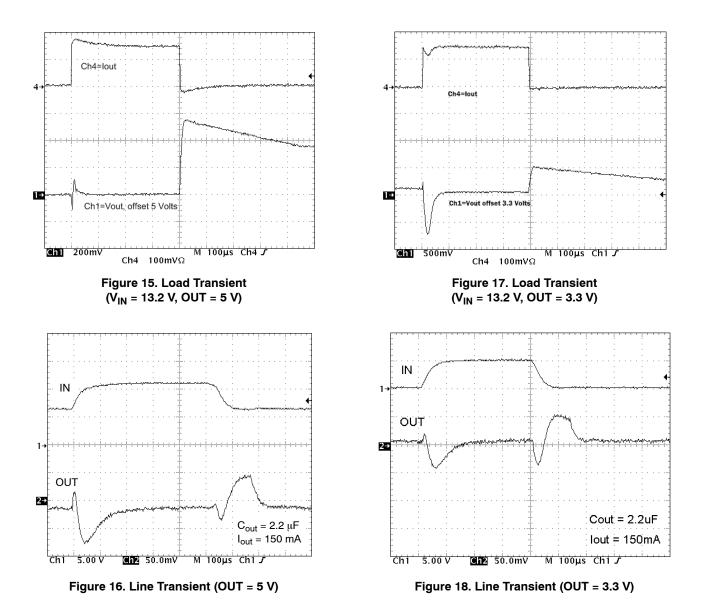


Figure 12. Quiescent Current vs. Input Voltage

TYPICAL OPERATING CHARACTERISTICS

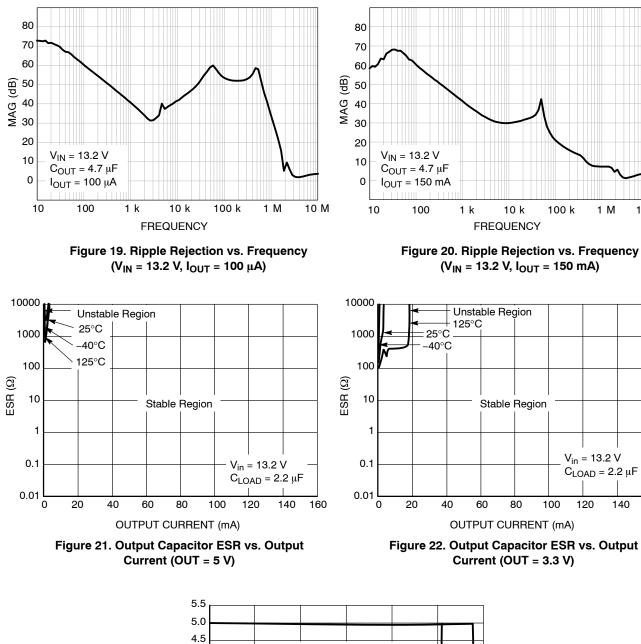
TYPICAL OPERATING CHARACTERISTICS

100 k

1 M

V_{in} = 13.2 V

120


100

 $C_{LOAD} = 2.2 \ \mu F$

140

160

10 M

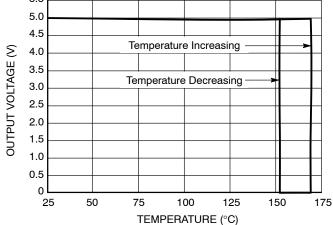


Figure 23. Thermal Shutdown vs. Temperature

DETAILED OPERATING DESCRIPTION

General

The NCV8660B is a 5 V and 3.3 V linear regulator providing low drop-out voltage for 150 mA at low quiescent current levels. Also featured in this part is a reset output with selectable delay times. Delay times are selectable via part selection and control through the Delay Time Select (DT) pin. No pull-up resistor is needed on the reset output (RO). Pull-up and pull-down capability are included. Only a small bypass capacitor on the input (IN) supply pin and output (OUT) voltage pin are required for normal operation. Thermal shutdown functionality protects the IC from damage caused from excessively high temperatures appearing on the IC.

Output Voltage

Output stability is determined by the capacitor selected from OUT to GND. The NCV8660B has been designed to work with low ESR (equivalent series resistance) ceramic capacitors. The device is extremely stable using virtually any capacitor 2.2 μ F and above. Reference the Output Capacitor Stability graph in Figure 21.

The output capacitor value will affect overshoot during power-up. A lower value capacitor will cause higher overshoot on the output. System evaluation should be performed with minimum loading for evaluation of overshoot.

Selection of process technology for the NCV8660B allows for low quiescent current independent of loading. Quiescent current will remain flat across the entire range of loads providing a low quiescent current condition in standby and under heavy loads. This is highly beneficial to systems requiring microprocessor interrupts during standby mode as duty cycle and load changes have no impact on the standby current. Reference Figure 14 for Quiescent Current vs Output Current.

Current Limit

Current limit is provided on OUT to protect the IC. The minimum specification is 205 mA. Current limit is specified under two conditions (OUT = 96% x OUT nominal) and (OUT = 0 V). No fold-back circuitry exists. Any measured differences can be attributed to change in die temperature. The part may be operated up to 205 mA provided thermal die temperature is considered and is kept below 150°C. Degradation of electrical parameters at this current is expected at these elevated levels. A reset (RO) will not occur with a load less than 205 mA.

Reset Output

A reset signal is provided on the Reset Output (RO) pin to provide feedback to the microprocessor of an out of regulation condition. This is in the form of a logic signal on RO. Output (OUT) voltage conditions below the RESET threshold cause RO to go low. The RO integrity is maintained down to OUT = 1.0 V.

The Reset Output (RO) circuitry includes an active internal pullup to the output (OUT) as shown in Figure 24. No external pullup is neccessary.

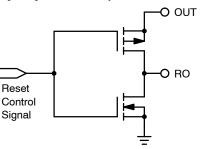
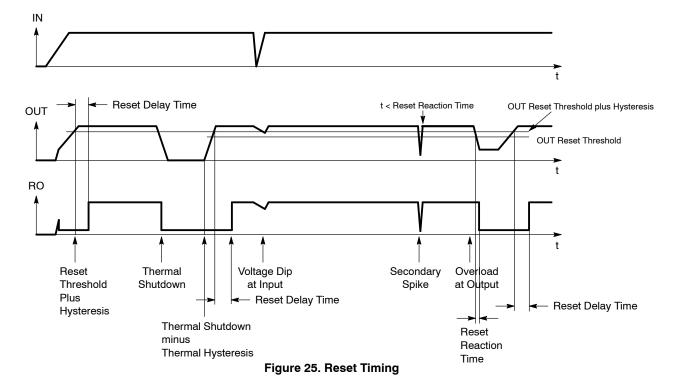
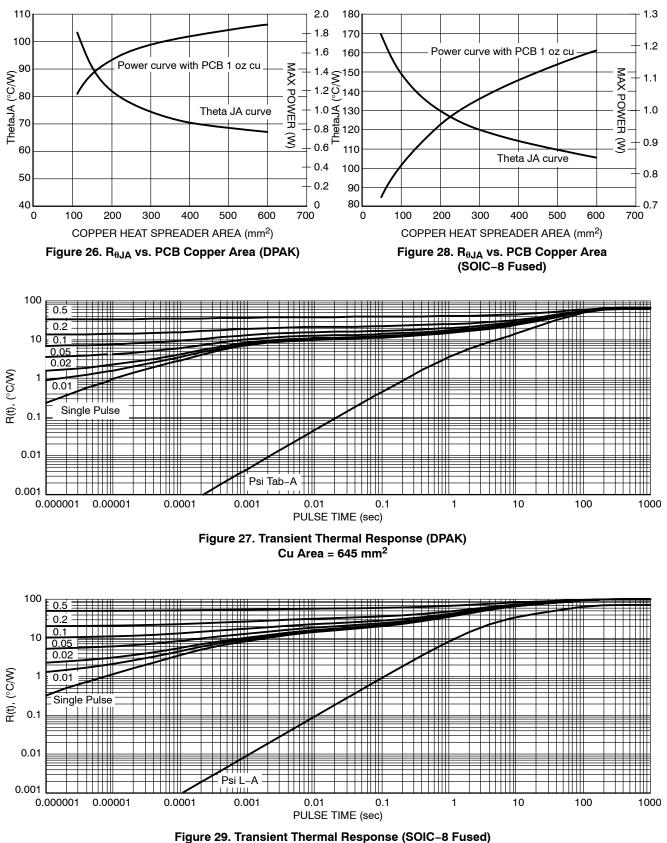
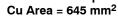



Figure 24. Reset Output Circuitry

During power-up (or restoring OUT voltage from a reset event), the OUT voltage must be maintained above the Reset threshold for the Reset Delay time before RO goes high. The time for Reset Delay is determined by the choice of IC and the state of the DT pin.

Reset Delay Time Select


Selection of the NCV8660B device and the state of the DT pin determines the available Reset Delay times. The part is designed for use with DT tied to ground or OUT, but may be controlled by any logic signal which provides a threshold between 0.8 V and 2 V. The default condition for an open DT pin is the slower Reset time (DT = GND condition). Times are in pairs and are highlighted in the chart below. Consult factory for availability.


	DT=GND	DT=OUT
	Reset Time	Reset Time
NCV86601B	8 ms	128 ms
NCV86602B	8 ms	32 ms
NCV86603B	16 ms	64 ms
NCV86604B	32 ms	128 ms

The Delay Time select (DT) pin is logic level controlled and provides Reset Delay time per the chart. Note the DT pin is sampled only when RO is low, and changes to the DT pin when RO is high will not effect the reset delay time.

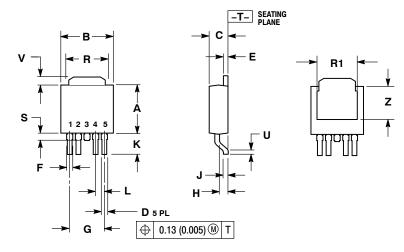
Thermal Shutdown

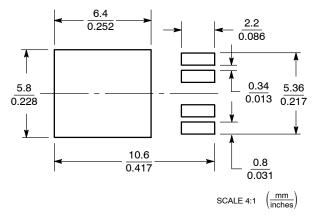
When the die temperature exceeds the Thermal Shutdown threshold, a Thermal Shutdown event is detected OUT is turned off, and RO goes low. The IC will remain in this state until the die temperature moves below the shutdown threshold (175°C typical) minus the hysteresis factor (25°C typical). The output will then turn back on and RO will go high after the RESET Delay time.

ORDERING INFORMATION

Device	Output Voltage	Reset Delay Time, DT to GND	Reset Delay Time, DT to OUT	Package	Shipping [†]
NCV86601BDT50RKG		8 ms	128 ms		
NCV86602BDT50RKG		8 ms	32 ms	DPAK	OFOO / Tana & Daal
NCV86603BDT50RKG		16 ms	64 ms	(Pb-Free)	2500 / Tape & Reel
NCV86604BDT50RKG	5.0.1	32 ms	128 ms		
NCV86601BD50R2G	5.0 V	8 ms	128 ms		
NCV86602BD50R2G		8 ms	32 ms	SOIC-8 FUSED (Pb-Free)	
NCV86603BD50R2G		16 ms	64 ms		2500 / Tape & Reel
NCV86604BD50R2G		32 ms	128 ms		
NCV86601BDT33RKG		8 ms	128 ms		
NCV86602BDT33RKG		8 ms	32 ms	DPAK	
NCV86603BDT33RKG		16 ms	64 ms	(Pb-Free)	2500 / Tape & Reel
NCV86604BDT33RKG		32 ms	128 ms		
NCV86601BD33R2G	3.3 V	8 ms	128 ms		
NCV86602BD33R2G	1	8 ms	32 ms	SOIC-8 FUSED	
NCV86603BD33R2G	1	16 ms	64 ms	(Pb-Free)	2500 / Tape & Reel
NCV86604BD33R2G	1	32 ms	128 ms	1	

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

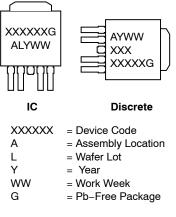



DPAK-5, CENTER LEAD CROP CASE 175AA **ISSUE B**

DATE 15 MAY 2014

SCALE 1:1

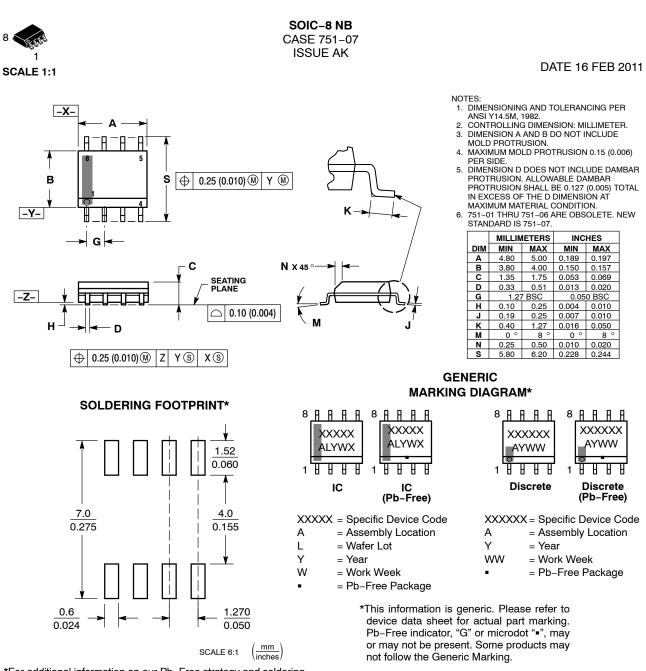
RECOMMENDED SOLDERING FOOTPRINT*



*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.22
в	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.020	0.028	0.51	0.71
Е	0.018	0.023	0.46	0.58
F	0.024	0.032	0.61	0.81
G	0.180	BSC	4.56	BSC
н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
к	0.102	0.114	2.60	2.89
L	0.045	BSC	1.14 BSC	
R	0.170	0.190	4.32	4.83
R 1	0.185	0.210	4.70	5.33
S	0.025	0.040	0.63	1.01
U	0.020		0.51	
۷	0.035	0.050	0.89	1.27
Z	0.155	0.170	3.93	4.32


GENERIC **MARKING DIAGRAMS***

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present.

DOCUMENT NUMBER:	98AON12855D Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	DPAK-5 CENTER LEAD CROP PAGE 1 OF					
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or cidental damages. ON Semiconductor does not convey any license under	or guarantee regarding circuit, and specifically			

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2	
ON Semiconductor and ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or others.				

© Semiconductor Components Industries, LLC, 2019

SOIC-8 NB CASE 751-07 **ISSUE AK**

STYLE 1: PIN 1. EMITTER COLLECTOR 2. COLLECTOR 3. 4. EMITTER EMITTER 5. BASE 6. 7 BASE EMITTER 8. STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN DRAIN 4. GATE 5. 6. GATE SOURCE 7. 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 COLLECTOR, DIE #2 2. З. EMITTER, COMMON 4. 5. EMITTER, COMMON 6 BASE. DIE #2 BASE, DIE #1 7. 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2. SOURCE 3 GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. DRAIN 8. STYLE 17: PIN 1. VCC 2. V2OUT V10UT З. TXE 4. 5. RXE 6. VFF 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3 CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7. 8. CATHODE 6 STYLE 25: PIN 1. VIN 2 N/C REXT З. 4. GND 5. IOUT 6. IOUT IOUT 7. 8. IOUT STYLE 29: BASE, DIE #1 PIN 1. 2 EMITTER, #1 BASE, #2 З. EMITTER, #2 4. 5 COLLECTOR, #2 COLLECTOR, #2 6.

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 COLLECTOR, #2 3. 4 COLLECTOR, #2 BASE, #2 5. EMITTER, #2 6. 7 BASE #1 EMITTER, #1 8. STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN SOURCE 4. SOURCE 5. 6. GATE GATE 7. 8. SOURCE STYLE 10: GROUND PIN 1. BIAS 1 OUTPUT 2. З. GROUND 4. 5. GROUND 6. BIAS 2 INPUT 7. 8. GROUND STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3 P-SOURCE P-GATE 4. P-DRAIN 5 6. P-DRAIN N-DRAIN 7. N-DRAIN 8. STYLE 18: PIN 1. ANODE ANODE 2. SOURCE 3. GATE 4. 5. DRAIN 6 DRAIN CATHODE 7. CATHODE 8. STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3 COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND STYLE 26: PIN 1. GND 2 dv/dt З. ENABLE 4. ILIMIT 5. SOURCE SOURCE 6. SOURCE 7. 8. VCC STYLE 30: DRAIN 1 PIN 1. DRAIN 1 2 GATE 2 З. SOURCE 2 4. SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5.

6.

7.

8 GATE 1

SOURCE 1/DRAIN 2

STYLE 3: PIN 1. DRAIN, DIE #1 DRAIN, #1 2. DRAIN, #2 З. 4. DRAIN, #2 GATE, #2 5. SOURCE, #2 6. 7 GATE #1 8. SOURCE, #1 STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS THIRD STAGE SOURCE GROUND З. 4. 5. DRAIN 6. GATE 3 SECOND STAGE Vd 7. FIRST STAGE Vd 8. STYLE 11: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. З. GATE 2 4. 5. DRAIN 2 6. DRAIN 2 DRAIN 1 7. 8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 ANODE 1 3 ANODE 1 4. 5. CATHODE, COMMON CATHODE, COMMON CATHODE, COMMON 6. 7. CATHODE, COMMON 8. STYLE 19: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. **MIRROR 1** STYLE 23: PIN 1. LINE 1 IN COMMON ANODE/GND COMMON ANODE/GND 2. 3 LINE 2 IN 4. LINE 2 OUT 5. COMMON ANODE/GND COMMON ANODE/GND 6. 7. LINE 1 OUT 8. STYLE 27: PIN 1. ILIMIT OVI O 2 UVLO З. 4. INPUT+ 5. 6. SOURCE SOURCE SOURCE 7. 8 DRAIN

DATE 16 FEB 2011

STYLE 4: PIN 1. 2. ANODE ANODE ANODE З. 4. ANODE ANODE 5. 6. ANODE 7 ANODE COMMON CATHODE 8. STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 BASE #2 З. COLLECTOR, #2 4. COLLECTOR, #2 5. 6. EMITTER, #2 EMITTER, #1 7. 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE 2. 3. GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 EMITTER, DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. COLLECTOR, DIE #1 8. STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3. 4. GATE (P) 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 24: PIN 1. BASE EMITTER 2. 3 COLLECTOR/ANODE COLLECTOR/ANODE 4. 5. CATHODE 6. CATHODE COLLECTOR/ANODE 7. 8. COLLECTOR/ANODE STYLE 28: PIN 1. SW_TO_GND 2. DASIC OFF DASIC_SW_DET З. 4. GND 5. 6. V MON VBULK 7. VBULK 8 VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2		
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.					

7.

8

COLLECTOR, #1

COLLECTOR, #1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and the support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized claim alleges that

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥