

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is and its officers, employees, even if such claim any manner.

FAIRCHILD

SEMICONDUCTOR

74AC157 • 74ACT157 Quad 2-Input Multiplexer

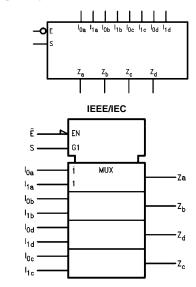
General Description

The AC/ACT157 is a high-speed quad 2-input multiplexer. Four bits of data from two sources can be selected using the common Select and Enable inputs. The four outputs present the selected data in the true (noninverted) form. The AC/ACT157 can also be used as a function generator.

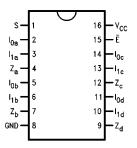
November 1988 Revised November 1999

Features

- I_{CC} and I_{OZ} reduced by 50%
- Outputs source/sink 24 mA
- ACT157 has TTL-compatible inputs


74AC157 • 74ACT157 Quad 2-Input Multiplexer

Ordering Code:


Order Number	Package Number	Package Description
74AC157SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body
74AC157SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74AC157MTC	MTC16	16 -Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74AC157PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
74ACT157SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body
74ACT157SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74ACT157MTC	MTC16	16 -Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74ACT157PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

Pin Descriptions

Pin Names	Description
I _{0a} –I _{0d}	Source 0 Data Inputs
I _{1a} –I _{1d}	Source 1 Data Inputs
Ē	Enable Input
S	Select Input
Z _a –Z _d	Outputs

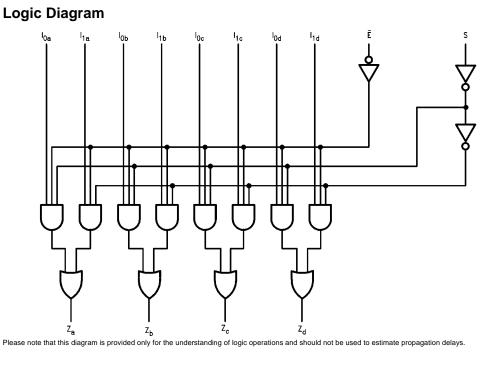
FACT™ is a trademark of Fairchild Semiconductor Corporation.

© 1999 Fairchild Semiconductor Corporation DS009929

Functional Description

The AC/ACT157 is a quad 2-input multiplexer. It selects four bits of data from two sources under the control of a common Select input (S). The Enable input (\overline{E}) is active-LOW. When \overline{E} is HIGH, all of the outputs (Z) are forced LOW regardless of all other inputs. The AC/ACT157 is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below:

 $Z_a = \overline{E} \bullet (I_{1a} \bullet S + I_{0a} \bullet \overline{S})$ $Z_{b} = \overline{E} \bullet (I_{1b} \bullet S + I_{0b} \bullet \overline{S})$ $Z_{c} = \overline{E} \bullet (I_{1c} \bullet S + I_{0c} \bullet \overline{S})$ $Z_{d} = \overline{\mathsf{E}} \bullet (\mathsf{I}_{1d} \bullet \mathsf{S} + \mathsf{I}_{0d} \bullet \overline{\mathsf{S}})$


A common use of the AC/ACT157 is the moving of data from two groups of registers to four common output busses. The particular register from which the data comes is determined by the state of the Select input. A less obvious use is as a function generator. The AC/ACT157 can generate any four of the sixteen different functions of two variables with one variable common. This is useful for implementing gating functions.

E H	S	I ₀	I ₁	Z
Н	V			
1	^	Х	Х	L
-	н	Х	L	L
L	н	х	н	н
L	L	L	Х	L
L	L	н	Х	н

H = HIGH Voltage Level

L = LOW Voltage Level X = Immaterial

Absolute Maximum R	atings(Note 1)	Recommended Operating				
Supply Voltage (V _{CC})	-0.5V to +7.0V	Conditions				
DC Input Diode Current (IIK)		Supply Voltage (V _{CC})				
$V_{I} = -0.5V$	–20 mA	AC	2.0V to 6.0V			
$V_I = V_{CC} + 0.5V$	+20 mA	ACT	4.5V to 5.5V			
DC Input Voltage (VI)	$-0.5 V$ to $V_{CC} + 0.5 V$	Input Voltage (V _I)	0V to V_{CC}			
DC Output Diode Current (I _{OK})		Output Voltage (V _O)	0V to V _{CC}			
$V_{O} = -0.5V$	–20 mA	Operating Temperature (T _A)	-40°C to +85°C			
$V_O = V_{CC} + 0.5V$	+20 mA	Minimum Input Edge Rate (ΔV/Δt)				
DC Output Voltage (V _O)	$-0.5 V$ to $V_{CC} + 0.5 V$	AC Devices				
DC Output Source		V_{IN} from 30% to 70% of V_{CC}				
or Sink Current (I _O)	±50 mA	V _{CC} @ 3.3V, 4.5V, 5.5V	125 mV/ns			
DC V _{CC} or Ground Current		Minimum Input Edge Rate (ΔV/Δt)				
per Output Pin (I _{CC} or I _{GND})	±50 mA	ACT Devices				
Storage Temperature (T _{STG})	-65°C to +150°C	V _{IN} from 0.8V to 2.0V				
Junction Temperature (T _J)		V _{CC} @ 4.5V, 5.5V	125 mV/ns			
PDIP	140°C	Note 1: Absolute maximum ratings are those value: to the device may occur. The databook specificatic out exception, to ensure that the system design is supply, temperature, and output/input loading varia recommend operation of FACT™ circuits outside da	ons should be met, with- s reliable over its power ables. Fairchild does not			

DC Electrical Characteristics for AC

Symbol	Parameter	V _{CC}	T _A = -	⊦25°C	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	Units	Conditions	
Symbol	Faldilleter	(V)	Тур	Gu	aranteed Limits	Units	Conditions	
V _{IH}	Minimum HIGH Level	3.0	1.5	2.1	2.1		$V_{OUT} = 0.1V$	
	Input Voltage	4.5	2.25	3.15	3.15	V	or $V_{CC} - 0.1V$	
		5.5	2.75	3.85	3.85			
V _{IL}	Maximum LOW Level	3.0	1.5	0.9	0.9		$V_{OUT} = 0.1V$	
	Input Voltage	4.5	2.25	1.35	1.35	V	or $V_{CC} - 0.1 V$	
		5.5	2.75	1.65	1.65			
√ _{ОН}	Minimum HIGH Level	3.0	2.99	2.9	2.9			
	Output Voltage	4.5	4.49	4.4	4.4	V	$I_{OUT} = -50 \ \mu A$	
		5.5	5.49	5.4	5.4			
							$V_{IN} = V_{IL} \text{ or } V_{IH}$	
		3.0		2.56	2.46		$I_{OH} = -12 \text{ mA}$	
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$	
		5.5		4.86	4.76		$I_{OH} = -24 \text{ mA}$ (Note	
V _{OL}	Maximum LOW Level	3.0	0.002	0.1	0.1			
	Output Voltage	4.5	0.001	0.1	0.1	V	$I_{OUT} = 50 \ \mu A$	
		5.5	0.001	0.1	0.1			
							$V_{IN} = V_{IL} \text{ or } V_{IH}$	
		3.0		0.36	0.44		$I_{OL} = 12 \text{ mA}$	
		4.5		0.36	0.44	V	$I_{OL} = 24 \text{ mA}$	
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 2)	
I _{IN}	Maximum Input	5.5		±0.1	±1.0	μA	$V_1 = V_{CC}$, GND	
Note 4)	Leakage Current	0.0		±0.1	11.0	μι	1 00	
I _{OLD}	Minimum Dynamic	5.5			75	mA	$V_{OLD} = 1.65V \text{ Max}$	
I _{ОНD}	Output Current (Note 3)	5.5			-75	mA	$V_{OHD} = 3.85V$ Min	
I _{CC}	Maximum Quiescent	5.5		4.0	40.0	μA	$V_{IN} = V_{CC}$	
Note 4)	Supply Current	5.5		4.0	-0.0	μΛ	or GND	

Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

Note 4: $I_{\rm IN}$ and $I_{\rm CC}$ @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V $V_{\rm CC}.$

www.fairchildsemi.com

74AC157 • 74ACT157

DC Characteristics for ACT

Symbol	Parameter	V _{CC}	V _{CC} T _A = +		$T_A = -40^{\circ}C$ to $+85^{\circ}C$	Units	Conditions
		(V)	Тур	Gι	aranteed Limits	Units	Conditions
VIH	Minimum HIGH Level	4.5	1.5	2.0	2.0	V	$V_{OUT} = 0.1V$
	Input Voltage	5.5	1.5	2.0	2.0	v	or $V_{CC} - 0.1V$
VIL	Maximum LOW Level	4.5	1.5	0.8	0.8	V	$V_{OUT} = 0.1V$
	Input Voltage	5.5	1.5	0.8	0.8	v	or $V_{CC} - 0.1V$
V _{OH}	Minimum HIGH Level	4.5	4.49	4.4	4.4	V	I _{OUT} = -50 μA
	Output Voltage	5.5	5.49	5.4	5.4	v	$I_{OUT} = -50 \mu A$
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$
		5.5		4.86	4.76		$I_{OH} = -24 \text{ mA}$ (Note 5
V _{OL}	Maximum LOW Level	4.5	0.001	0.1	0.1	V	I _{OUT} = 50 μA
	Output Voltage	5.5	0.001	0.1	0.1	v	
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		0.36	0.44	V	$I_{OL} = 24 \text{ mA}$
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 5)
I _{IN}	Maximum Input	5.5	±0.1 ±'	±1.0	μA	$V_{I} = V_{CC_{2}}$ GND	
	Leakage Current	0.0		20.1	11.0	μι	
ICCT	Maximum	5.5	0.6		1.5	mA	$V_{I} = V_{CC} - 2.1V$
	I _{CC} /Input	0.0	0.0		1.0	iii) (1-100 2.11
I _{OLD}	Minimum Dynamic	5.5			75	mA	$V_{OLD} = 1.65 V Max$
I _{OHD}	Output Current (Note 6)	5.5			-75	mA	V _{OHD} = 3.85V Min
I _{CC}	Maximum Quiescent Supply Current	5.5		4.0	40.0	μA	V _{IN} = V _{CC} or GND
							1

Note 5: All outputs loaded; thresholds on input associated with output under test.

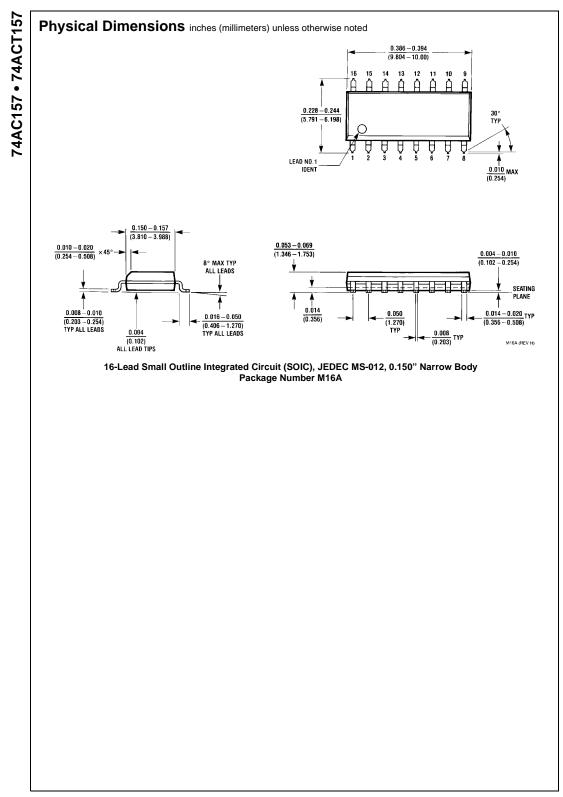
Note 6: Maximum test duration 2.0 ms, one output loaded at a time.

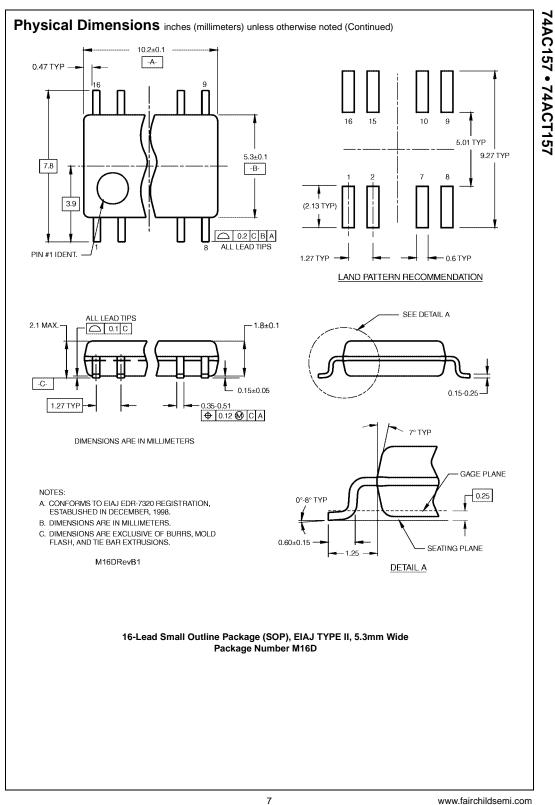
AC Electrical Characteristics for AC

Symbol		V _{cc}		$T_A = +25^{\circ}C$		T _A = -40°	C to +85°C	
	Parameter	(V)	C _L = 50 pF			$C_L = 50 \text{ pF}$		Units
		(Note 7)	Min	Тур	Max	Min	Max	1
t _{PLH}	Propagation Delay	3.3	1.5	7.0	11.5	1.5	13.0	ns
	S to Z _n	5.0	1.5	5.5	9.0	1.5	10.0	115
t _{PHL}	Propagation Delay	3.3	1.5	6.5	11.0	1.5	12.0	ns
	S to Z _n	5.0	1.5	5.0	8.5	1.0	9.5	
t _{PLH}	Propagation Delay	3.3	1.5	7.0	11.5	1.5	13.0	ns
	E to Z _n	5.0	1.5	5.5	9.0	1.5	10.0	
t _{PHL}	Propagation Delay	3.3	1.5	6.5	11.0	1.5	12.0	
	E to Z _n	5.0	1.5	5.5	9.0	1.0	9.5	ns
t _{PLH}	Propagation Delay	3.3	1.5	5.0	8.5	1.0	9.0	ns
	I _n to Z _n	5.0	1.5	4.0	6.5	1.0	7.0	115
t _{PHL}	Propagation Delay	3.3	1.5	5.0	8.0	1.0	9.0	ns
	I _n to Z _n	5.0	1.5	4.0	6.5	1.0	7.0	115

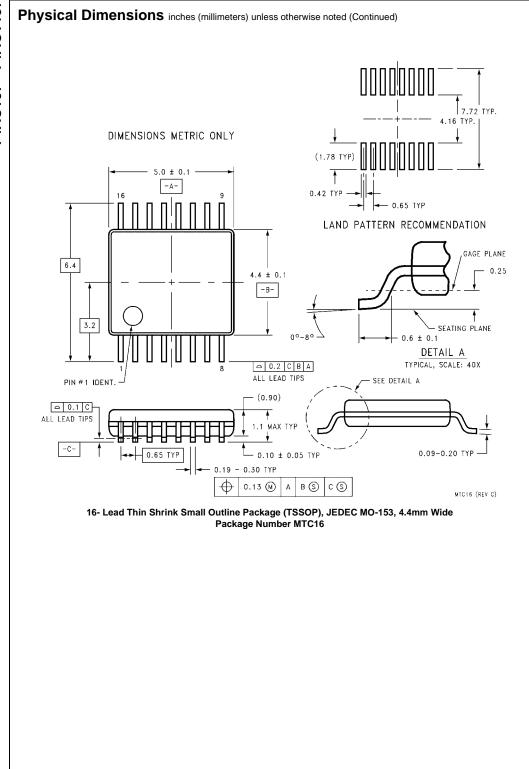
Note 7: Voltage Range 3.3 is $3.3V \pm 0.3V$

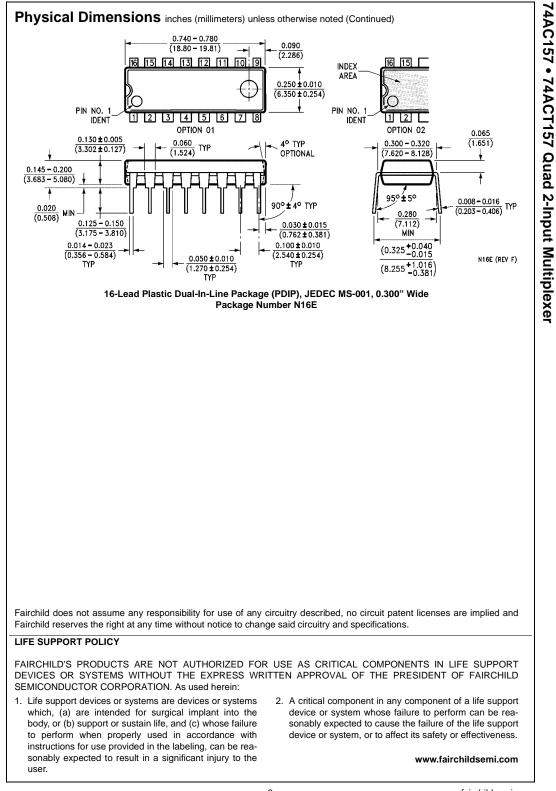
Voltage Range 5.0 is 5.0V ± 0.5 V


Symbol		V _{CC}	$T_A = +25^{\circ}C$ $C_L = 50 \text{ pF}$			$T_A = -40^{\circ}$	Units	
	Parameter	(V)				$C_L = 50 \text{ pF}$		
		(Note 8)	Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay S to Z _n	5.0	2.0	5.5	9.0	1.5	10.0	ns
t _{PHL}	Propagation Delay S to Z _n	5.0	2.0	5.5	9.5	2.0	10.5	ns
t _{PLH}	Propagation Delay \overline{E} to Z _n	5.0	1.5	6.0	10.0	1.5	11.5	ns
t _{PHL}	Propagation Delay E to Z _n	5.0	1.5	5.0	8.5	1.0	9.0	ns
t _{PLH}	Propagation Delay I _n to Z _n	5.0	1.5	4.0	7.0	1.0	8.5	ns
t _{PHL}	Propagation Delay I _n to Z _n	5.0	1.5	4.5	7.5	1.0	8.5	ns


Note 8: Voltage Range 5.0 is $5.0V \pm 0.5V$

Capacitance


Symbol	Parameter	Тур	Units	Conditions
CIN	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance	50.0	pF	$V_{CC} = 5.0V$


74AC157 • 74ACT157

7

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.