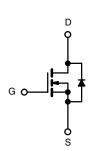


New Product

SUP33N20-60P

Vishay Siliconix

N-Channel 200-V (D-S) MOSFET


PRODUCT SUMMARY				
V _{(BR)DSS} (V)	r _{DS(on)} (Ω)	I _D (A)	Q _g (Тур)	
200	0.059 at V _{GS} = 15 V	33	53	
	0.060 at V _{GS} = 10 V	33	- 55	

FEATURES

- TrenchFET[®] Power MOSFETS
- 175 °C Junction Temperature
- 100 % UIS and $\rm R_g$ Tested

APPLICATIONS

- Power Supply
- Lighting
- Industrial

TO-220AB

Top View

Ordering Information: SUP33N20-60P-E3 (Lead (Pb)-free)

N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS	T _C = 25 °C, unless ot	herwise noted			
Parameter	Symbol	Limit	Unit		
Drain-Source Voltage		V _{DS}	200	v	
Gate-Source Voltage		V _{GS}	± 25	v	
Continuous Drain Current (T_{1} = 175 °C)	T _C = 25 °C	1-	33		
Continuous Drain Current (1j = 175 C)	T _C = 100 °C		20.8	•	
Pulsed Drain Current		I _{DM}	80	A	
Single Pulse Avalanche Current	L = 0.1 mH	I _{AS}	20		
Single Pulse Avalanche Energy ^a	L = 0.1 mm	E _{AS}	20	mJ	
Maximum Power Dissipation ^a	T _C = 25 °C	В	156 ^b	14/	
	T _A = 25 °C ^c	- P _D -	3.12	- w	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 175	°C	

THERMAL RESISTANCE RATINGS				
Parameter	Symbol	Limit	Unit	
Junction-to-Ambient (PCB Mount) ^c	R _{thJA}	40	°C/W	
Junction-to-Case (Drain)	R _{thJC}	0.8		

Notes:

a. Duty cycle \leq 1 %.

b. See SOA curve for voltage derating.

c. When Mounted on 1" square PCB (FR-4 material).

SUP33N20-60P

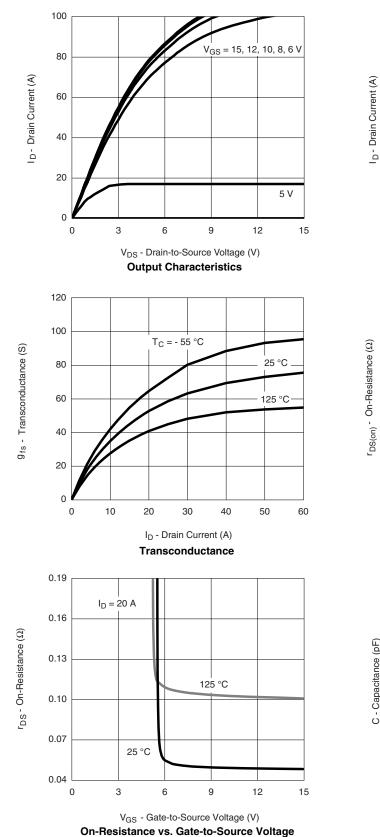
Vishay Siliconix

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Static	- 			·		
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{DS} = 0 \text{ V}, \text{ I}_{D} = 250 \mu\text{A}$	200			v
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	2.5		4.5	
Gate-Body Leakage	I _{GSS}	V_{DS} = 0 V, V_{GS} = ± 20 V			± 100	- nA
Gale-Body Leakage		V_{DS} = 0 V, V_{GS} = ± 25 V			± 300	
Zero Gate Voltage Drain Current		$V_{DS} = 200 \text{ V}, V_{GS} = 0 \text{ V}$			1	μA
	I _{DSS}	V_{DS} = 200 V, V_{GS} = 0 V, T_{J} = 100 °C			25	
		V_{DS} = 200 V, V_{GS} = 0 V, T_{J} = 150 °C			250	
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 10$ V, $V_{GS} = 10$ V	40			Α
Drain-Source On-State Resistance ^a		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 20 \text{ A}$		0.049	0.060	- Ω
	r	$V_{GS} = 15 \text{ V}, \text{ I}_{D} = 20 \text{ A}$		0.0485	0.059	
	r _{DS(on)}	V_{GS} = 10 V, I _D = 20 A, T _J = 100 °C			0.110	
		V_{GS} = 10 V, I _D = 20 A, T _J = 150 °C			0.144	
Forward Transconductance ^a	9 _{fs}	V _{DS} = 15 V, I _D = 20 A	25			S
Dynamic ^b	+			•		
Input Capacitance	C _{iss}			2735		pF
Output Capacitance	C _{oss}	V_{GS} = 0 V, V_{DS} = 25 V, f = 1 MHz		271		
Reverse Transfer Capacitance	C _{rss}			117		
Tatal Cata Charge		$V_{DS} = 100 \text{ V}, \text{ V}_{GS} = 15 \text{ V}, \text{ I}_{D} = 50 \text{ A}$		75	113	
Total Gate Charge ^c	Qg			53	80	nC
Gate-Source Charge ^c	Q _{gs}	V_{DS} = 100 V, V_{GS} = 10 V, I_{D} = 50 A		14		
Gate-Drain Charge ^c	Q _{gd}			17.5		
Gate Resistance	R _g	f = 1 MHz		1.2	1.8	Ω
Turn-On Delay Time ^c	t _{d(on)}			16	25	ns
Rise Time ^c	t _r	V_{DD} = 100 V, R_L = 2 Ω		170	260	
Turn-Off Delay Time ^c	t _{d(off)}	$I_D \cong 50$ Å, $V_{GEN} = 10$ V, $R_g = 1 \Omega$		26	40	
Fall Time ^c	t _f			9	18	
Source-Drain Diode Ratings and Cha	racteristics	(T _C = 25 °C) ^b				
Continuous Current	ا _S				33	A
Pulsed Current	I _{SM}				80	
Forward Voltage ^a	V _{SD}	I _F = 20 A, V _{GS} = 0 V		0.86	1.5	V
Reverse Recovery Time	t _{rr}			114	170	ns
Peak Reverse Recovery Current	I _{RM(REC)}			12	Α	
Reverse Recovery Charge	Q _{rr}	I _F = 40 A, di/dt = 100 A/µs		0.46	0.69	μC
Reverse Recovery Fall Time	t _a	82				
Reverse Recovery Rise Time	t _b			32		nS

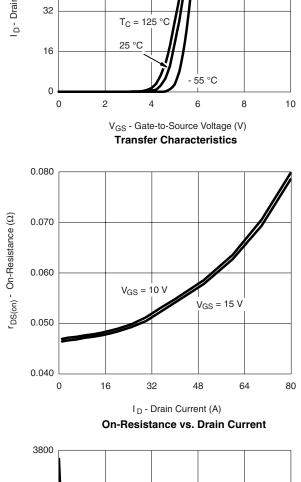
Notes:

a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.

b. Guaranteed by design, not subject to production testing.

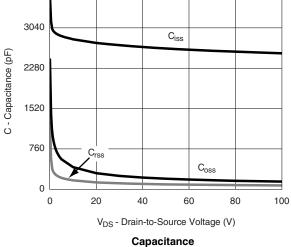

c. Independent of operating temperature.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.



SUP33N20-60P

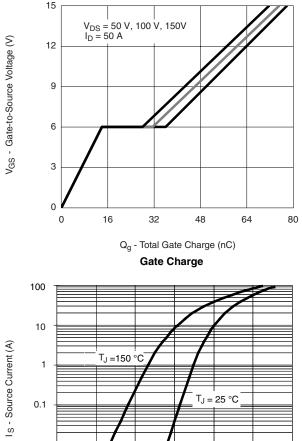
Vishay Siliconix

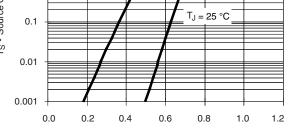

TYPICAL CHARACTERISTICS 25 °C, unless noted

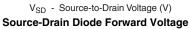
80

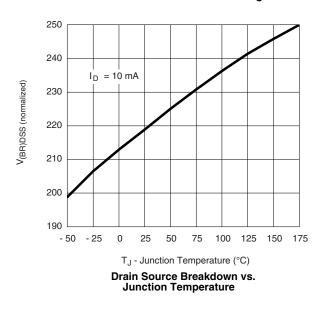
64

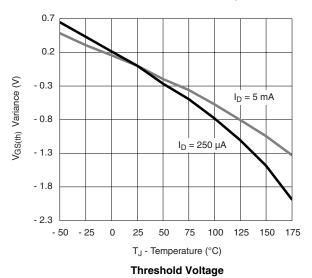
48

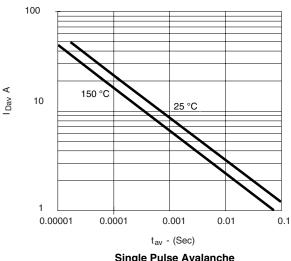



Document Number: 74309 S-62210-Rev. A, 30-Oct-06

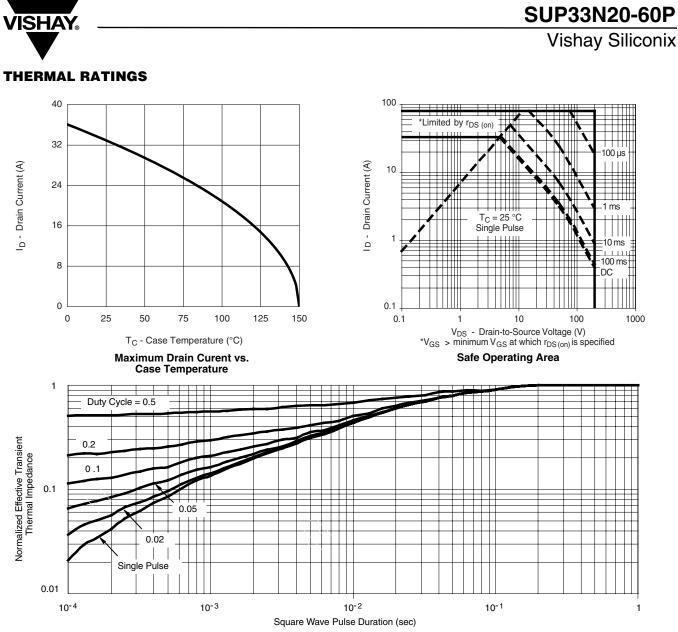

SUP33N20-60P


Vishay Siliconix





2.9 $I_D = 20$ Å 2.4 r_{DS(on)} - On-Resistance (Normalized) $V_{GS} = 10 V$ 1.9 V_{GS} = 15 V 1.4 0.9 0.4 - 25 25 150 175 - 50 0 50 75 100 125 T_J - Junction Temperature (°C)


VISHAY

On-Resistance vs. Junction Temperature

Single Pulse Avalanche Current Capability vs. Time

Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?74309

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.