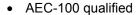


VNH3ASP30-E


Automotive fully integrated H-bridge motor driver

Datasheet - production data

Features

Туре	R _{DS(on)}	l _{out}	V _{ccmax}
VNH3ASP30-E	42 m Ω max (per leg)	30 A	41 V

- 5 V logic level compatible inputs
- Undervoltage and overvoltage shutdown
- Overvoltage clamp
- · Thermal shut down
- Cross-conduction protection
- · Linear current limiter
- · Very low standby power consumption
- PWM operation up to 20 kHz
- Protection against loss of ground and loss of V_{CC}
- Current-sense output proportional to motor current
- Package: ECOPACK[®]

Description

The VNH3ASP30-E is a full-bridge motor driver intended for a wide range of automotive applications. The device incorporates a dual monolithic high-side driver (HSD) and two low-

This is information on a product in full production.

side switches. The HSD switch is designed using STMicroelectronics proprietary VIPower™ M0 technology that efficiently integrates a true Power MOSFET with an intelligent signal/protection circuit on the same die.

The low-side switches are vertical MOSFETs manufactured using STMicroelectronics proprietary EHD ("STripFET™") process.The three circuits are assembled in a MultiPowerSO-30 package on electrically isolated lead frames. This package, specifically designed for the harsh automotive environment, offers improved thermal performance thanks to exposed die pads. Moreover, its fully symmetrical mechanical design provides superior manufacturability at board level. The input signals IN_A and IN_B can directly interface with the microcontroller to select the motor direction and the brake condition. Pins DIAG_A/EN_A or DIAG_B/EN_B, when connected to an external pullup resistor, enable one leg of the bridge. They also provide a feedback digital diagnostic signal. The normal condition operation is explained in the truth table. The CS pin monitors the motor current by delivering a current proportional to its value. The speed of the motor can be controlled in all possible conditions by the PWM up to 20 kHz. In all cases, a low level state on the PWM pin will turn off both the LS_A and LS_B switches. When PWM rises to a high level, LS_A or LS_B turn on again depending on the input pin state.

Table 1. Device summary

Package	Order code
rackaye	Tape & reel
MultiPowerSO-30	VNH3ASP30TR-E

www.st.com

January 2017 DocID10833 Rev 7 1/34

Contents VNH3ASP30-E

Contents

1	Bloc	k diagra	am and pin description	5
2	Elec	trical sp	pecifications	8
	2.1	Absolu	te maximum ratings	8
	2.2	Electri	cal characteristics	9
	2.3	Electri	cal characteristics curves	. 16
3	App	lication	information	. 20
	3.1	Revers	se battery protection	. 21
4	Pack	kage an	d PCB thermal data	. 25
	4.1	MultiPo	owerSO-30 thermal data	. 25
		4.1.1	Thermal calculation in clockwise and anti-clockwise operation in Steady-state mode	26
		4.1.2	Thermal resistances definition (values according to the PCB heatsink area)	
		4.1.3	Thermal calculation in Transient mode	26
		4.1.4	Single pulse thermal impedance definition (values according to the Poheatsink area)	
5	Pack	kage inf	ormation	. 30
	5.1	MultiPo	owerSO-30 package information	. 30
	5.2	Packin	g information	. 32
6	Revi	sion his	story	. 33

Downloaded from Arrow.com.

VNH3ASP30-E List of tables

List of tables

Table 1.	Device summary	1
Table 2.	Block description	5
Table 3.	Pin definitions and functions	6
Table 4.	Pin functions description	7
Table 5.	Absolute maximum ratings	8
Table 6.	Power section	9
Table 7.	Logic inputs (INA, INB, ENA, ENB)	9
Table 8.	PWM	10
Table 9.	Switching (V _{CC} = 13V, R _{LOAD} = 1 W)	10
Table 10.	Protection and diagnostic	10
Table 11.	Current sense (9V < V _{CC} < 16V)	11
Table 12.	Truth table in normal operating conditions	14
Table 13.	Truth table in fault conditions (detected on OUTA)	14
Table 14.	Electrical transient requirements	15
Table 15.	Thermal calculation in clockwise and anti-clockwise operation in steady-state mode	
Table 16.	Thermal parameters	28
Table 17.	MultiPowerSO-30 mechanical data	30
Table 18	Document revision history	33

List of figures VNH3ASP30-E

List of figures

Figure 1.	Block diagram	
Figure 2.	Configuration diagram (top view)	6
Figure 3.	Current and voltage conventions	
Figure 4.	Definition of the delay times measurement	12
Figure 5.	Definition of the low-side switching times	12
Figure 6.	Definition of the high-side switching times	
Figure 7.	Definition of dynamic cross conduction current during a PWM operation	
Figure 8.	On state supply current	16
Figure 9.	Off state supply current	16
Figure 10.	High-level input current	16
Figure 11.	Input clamp voltage	16
Figure 12.	Input high-level voltage	16
Figure 13.	Input low-level voltage	16
Figure 14.	Input hysteresis voltage	17
Figure 15.	High-level enable pin current	17
Figure 16.	Delay time during change of operation mode	17
Figure 17.	Enable clamp voltage	
Figure 18.	High-level enable voltage	17
Figure 19.	Low-level enable voltage	
Figure 20.	PWM high-level voltage	
Figure 21.	PWM low-level voltage	
Figure 22.	PWM high-level current	
Figure 23.	Overvoltage shutdown	18
Figure 24.	Undervoltage shutdown	
Figure 25.	Current limitation	
Figure 26.	On state high-side resistance vs Tcase	
Figure 27.	On state low-side resistance vs Tcase	
Figure 28.	On state high-side resistance vs VCC	
Figure 29.	On state low-side resistance vs VCC	
Figure 30.	Output voltage rise time	
Figure 31.	Output voltage fall time	
Figure 32.	Typical application circuit for DC to 20 kHz PWM operation short circuit protection	
Figure 33.	Half-bridge configuration	
Figure 34.	Multi-motor configuration	
Figure 35.	Waveforms in full-bridge operation	
Figure 36.	Waveforms in full-bridge operation (continued)	
Figure 37.	MultiPowerSO-30™ PC board	
Figure 38.	Chipset configuration	
Figure 39.	Auto and mutual RthJA vs PCB copper area in open box free air condition	
Figure 40.	MultiPowerSO-30 HSD thermal impedance junction ambient single pulse	
Figure 41.	MultiPowerSO-30 LSD thermal impedance junction ambient single pulse	
Figure 42.	Thermal fitting model of an H-bridge in MultiPowerSO-30	
Figure 43.	MultiPowerSO-30 package outline	
Figure 44.	MultiPowerSO-30 suggested pad layout	
Figure 45.	MultiPowerSO-30 tape and reel shipment (suffix "TR")	32

1 Block diagram and pin description

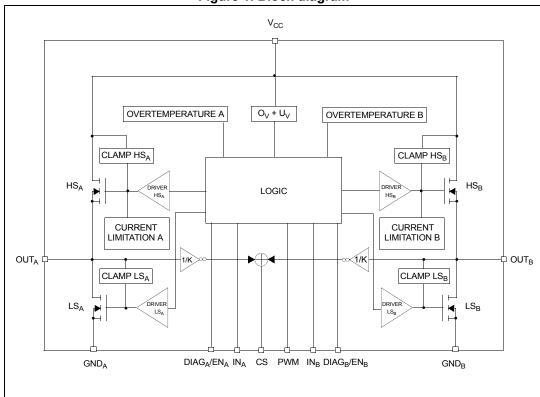


Figure 1. Block diagram

Table 2. Block description

Name	Description
Logic control	Allows the turn-on and the turn-off of the high-side and the low-side switches according to the truth table
Overvoltage + undervoltage	Shuts down the device outside the range [5.5V16V] for the battery voltage
High-side and low- side clamp voltage	Protect the high-side and the low-side switches from the high voltage on the battery line in all configurations for the motor
High-side and low- side driver	Drives the gate of the concerned switch to allow a good R _{DS(on)} for the leg of the bridge
Linear current limiter	Limits the motor current by reducing the high-side switch gate source voltage when short-circuit to ground occurs
Overtemperature protection	In case of short-circuit with the increase of the junction's temperature, shuts down the concerned high side to prevent its degradation and to protect the die
Fault detection	Signals an abnormal behavior of the switches in the half-bridge A or B by pulling low the concerned $\mathrm{EN}_{\mathrm{X}}/\mathrm{DIAG}_{\mathrm{X}}$ pin

DocID10833 Rev 7

OUTA Nc [Nc OUT_A GND_A V_{CC} Heat Slug3 Nc GND_A GND_A IN_A OUTA EN_A/DIAG_A Nc Nc V_{CC} PWM[\Box V_{CC} Heat Slug1 CS Nc OUTB EN_B/DIAG_B [IN_B ☐ GND_B OUT_B Nc ☐ GND_B Heat Slug2 GND_B V_{CC} Nc Nc OUT_B 16

Figure 2. Configuration diagram (top view)

Table 3. Pin definitions and functions

Pin No.	Symbol	Function
1, 25, 30	OUT _A , Heat Slug3	Source of high-side switch A / Drain of low-side switch A
2, 4, 7, 12, 14, 17, 22, 24, 29	NC	Not connected
3, 13, 23	V _{CC} , Heat Slug1	Drain of high-side switches and power supply voltage
5	IN _A	Clockwise input
6	EN _A /DIAG _A	Status of high-side and low-side switches A; open drain output
8	PWM	PWM input
9	CS	Output of current sense
10	EN _B /DIAG _B	Status of high-side and low-side switches B; open drain output
11	IN _B	Counter clockwise input
15, 16, 21	OUT _B , Heat Slug2	Source of high-side switch B / Drain of low-side switch B
26, 27, 28	GND _A	Source of low-side switch A ⁽¹⁾
18, 19, 20	GND _B	Source of low-side switch B ⁽¹⁾

^{1.} GND_A and GND_B must be externally connected together.

577

Table 4. Pin functions description

Name	Description			
V_{CC}	Battery connection			
GND _A , GND _B	Power grounds; must always be externally connected together			
OUT _A , OUT _B	Power connections to the motor			
IN _A , IN _B	Voltage controlled input pins with hysteresis, CMOS compatible: These two pins control the state of the bridge in normal operation according to the truth table (brake to V_{CC} , brake to GND, clockwise and counterclockwise).			
PWM	Voltage controlled input pin with hysteresis, CMOS compatible: Gates of low-side FETs are modulated by the PWM signal during their ON phase allowing speed control of the motor.			
EN _A /DIAG _A , EN _B /DIAG _B	Open drain bidirectional logic pins. These pins must be connected to an external pull up resistor. When externally pulled low, they disable half-bridge A or B. In case of fault detection (thermal shutdown of a high-side FET or excessive ON state voltage drop across a low-side FET), these pins are pulled low by the device (see truth table in fault condition).			
cs	Analog current-sense output. This output sources a current proportional to the motor current. The information can be read back as an analog voltage across an external resistor.			

2 Electrical specifications

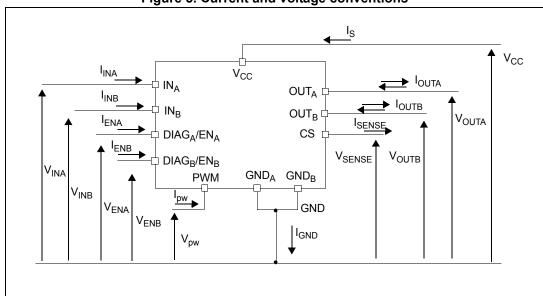


Figure 3. Current and voltage conventions

2.1 Absolute maximum ratings

Table 5. Absolute maximum ratings

145.5 6.7 1550.415						
Symbol	Parameter	Value	Unit			
V_{CC}	Supply voltage	+41	V			
I _{max}	Maximum output current (continuous)	30	Λ.			
I _R	Reverse output current (continuous)	-30	A			
I _{IN}	Input current (IN _A and IN _B pins)	±10				
I _{EN}	Enable input current (DIAG _A /EN _A and DIAG _B /EN _B pins)	±10	mA			
I _{PW}	PWM input current	±10				
V _{CS}	Current-sense maximum voltage	-3/+15	V			
V _{ESD}	Electrostatic discharge (R = 1.5kΩ, C = 100pF) – CS pin – logic pins – output pins: OUT _A , OUT _B , V _{CC}	2 4 5	kV kV kV			
T _J	Junction operating temperature	Internally limited				
T _C	Case operating temperature	-40 to 150	°C			
T _{stg}	Storage temperature	-55 to 150				

577

2.2 Electrical characteristics

 V_{CC} = 9V up to 16 V; -40°C < T_{J} < 150°C, unless otherwise specified.

Table 6. Power section

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{CC}	Operating supply voltage		5.5		16	V
I _S	Supply current	Off state: $IN_A = IN_B = PWM = 0$; $T_J = 25^{\circ}C$; $V_{CC} = 13V$ $IN_A = IN_B = PWM = 0$;		12	30 60	μA μA
		On state: IN _A or IN _B = 5V, no PWM			10	mA
R _{ONHS}	Static high-side resistance	I _{OUT} = 12A; T _J = 25°C I _{OUT} = 12A; T _J = -40 to 150°C			30 60	mΩ
R _{ONLS}	Static low-side resistance	I_{OUT} = 12A T _J = 25°C I_{OUT} = 12A; T _J = -40 to 150°C			12 24	mΩ
V _f	High-side freewheeling diode forward voltage	I _f = 12A		0.8	1.1	V
	High-side off-state	$T_J = 25^{\circ}C; V_{OUTX} = EN_X = 0V; V_{CC} = 13V$			3	
I _{L(off)}	output current (per channel)	$T_J = 125$ °C; $V_{OUTX} = EN_X = 0V$; $V_{CC} = 13V$			5	μΑ
I _{RM}	Dynamic cross- conduction current	I _{OUT} = 12A (see <i>Figure 7</i>)		1.7		Α

Table 7. Logic inputs (IN_A , IN_B , EN_A , EN_B)

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V_{IL}	Input low-level voltage				1.25	
V _{IH}	Input high-level voltage	Normal operation (DIAG _X /EN _X pin acts as an input pin)	3.25			
V _{Ihys}	Input hysteresis voltage	,	0.5			V
	Input clamp voltage	I _{IN} = 1mA	5.5	6.3	7.5	
V _{ICL}		I _{IN} = -1mA	-1.0	-0.7	-0.3	
I _{INL}	Input low current	V _{IN} = 1.25 V	1			
I _{INH}	Input high current	V _{IN} = 3.25V			10	μΑ
V _{DIAG}	Enable output low-level voltage	Fault operation (DIAG $_X$ /EN $_X$ pin acts as an output pin); I $_{EN}$ = 1mA			0.4	V

Table 8. PWM

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V_{PWL}	PWM low-level voltage				1.25	V
I _{PWL}	PWM low-level pin current	V _{pw} = 1.25 V	1			μA
V _{PWH}	PWM high-level voltage		3.25			V
I _{PWH}	PWM high-level pin current	V _{pw} = 3.25V			10	μA
V _{PWhys}	PWM hysteresis voltage		0.5			
V	PWM clamp voltage	I _{pw} = 1mA	V _{CC} + 0.3	V _{CC} + 0.7	V _{CC} + 1.0	V
V _{PWCL}	1 Will clamp voltage	I _{pw} = -1mA	-6.0	-4.5	-3.0	
C _{INPW}	PWM pin input capacitance	V _{IN} = 2.5V			25	pF

Table 9. Switching (V_{CC} = 13V, R_{LOAD} = 1 Ω)

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
f_{PW}	PWM frequency		0		20	kHz
t _{d(on)}	Turn-on delay time	Input rise time < 1µs (see <i>Figure 6</i>)			250	
t _{d(off)}	Turn-off delay time	Input rise time < 1µs (see <i>Figure 6</i>)			250	
t _r	Rise time	(see Figure 5)		1	1.6	μs
t _f	Fall time	(see Figure 5)		1	2.4	
t _{DEL}	Delay time during change of operating mode	(see Figure 4)	300	600	1800	
t _{rr}	High-side freewheeling diode reverse recovery time	(see Figure 7)		110		ns

Table 10. Protection and diagnostic

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{UV(sd)}	Undervoltage shutdown				5.5	
V _{UV(reset)}	Undervoltage reset			4.7		V
V _{OV(sd)}	Overvoltage shutdown		16	19	22	
I _{LIM}	High-side current limitation		30	50	70	Α
V _{CLP}	Total clamp voltage (V _{CC} to GND)	I _{OUT} = 12A	43	48	54	٧
T _{th(sd)}	Thermal shutdown temperature	V _{IN} = 3.25V	150	175	200	
T _{h(reset)}	Thermal reset temperature		135			°C
T _{th(hys)}	Thermal hysteresis		7	15		

Table 11. Current sense (9V < V_{CC} < 16V)

	, 00 ,					
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
K ₁	I _{OUT} /I _{SENSE}	I_{OUT} = 30A; R_{SENSE} = 700 Ω ; T_{J} = -40 to 150°C	4000	4700	5400	
K ₂	I_{OUT}/I_{SENSE} $I_{OUT} = 8A; R_{SENSE} = 700\Omega;$ $T_{J} = -40 \text{ to } 150^{\circ}\text{C}$		3750	4700	5650	
$dK_1/K_1^{(1)}$	Analog sense current drift	I_{OUT} = 30A; R_{SENSE} = 700 Ω ; T_{J} = -40 to 150°C	-8		+8	%
dK ₂ /K ₂ ⁽¹⁾ Analog sense current drift		I _{OUT} = 8A; R _{SENSE} = 700Ω; T _J = -40 to 150°C	-10		+10	70
I _{SENSEO}	Analog sense leakage current	$I_{OUT} = 0A; V_{SENSE} = 0V;$ $T_{J} = -40 \text{ to } 150^{\circ}\text{C}$	0		70	μA

^{1.} Analog sense current drift is deviation of factor K for a given device over (-40°C to 150°C and

⁹V < V_{CC} < 16V) with respect to its value measured at T_J = 25°C, V_{CC} = 13V

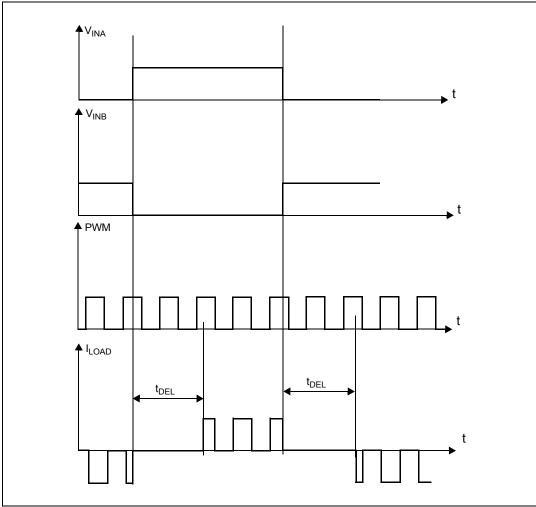
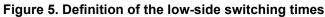
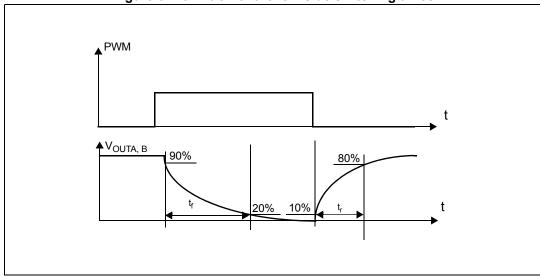




Figure 4. Definition of the delay times measurement

57/

12/34

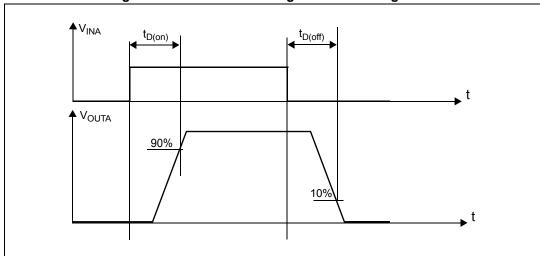
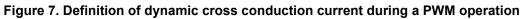
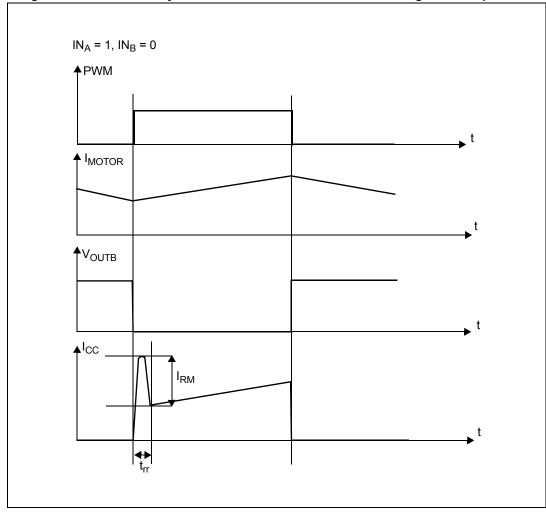




Figure 6. Definition of the high-side switching times

5/

DocID10833 Rev 7

Table 12. Truth table in normal operating conditions

INA	IN _B	DIAG _A /EN _A	DIAG _B /EN _B	OUTA	OUTB	cs	Operating mode
1	1			Ц	Н	High Imp.	Brake to V _{CC}
'	0	H L		Clockwise (CW)			
0	1	ı	'	ı	Н	$I_{SENSE} = I_{OUT}/K$	Counterclockwise (CCW)
	0			L	L	High Imp.	Brake to GND

Table 13. Truth table in fault conditions (detected on OUT_A)

INA	IN _B	DIAG _A /EN _A	DIAG _B /EN _B	OUTA	OUTB	cs	
1	1	1			Н	High Imp.	
'	0		1		L	riigiriirip.	
0	1		0	OPEN	Н	I _{OUTB} /K	
0	0	0			L	High Imp.	
	Х				OPEN	riigiriirip.	
X	1				Н	I _{OUTB} /K	
	0		l		L	High Imp.	
		Fault Inf	ormation	Protection	on Action		

Note:

Notice that saturation detection on the low side power MOSFET is possible only if the impedance of the short-circuit from the output to the battery is less than $100m\Omega$ when the device is supplied with a battery voltage of 13.5V.

57/

Table 14. Electrical transient requirements

ISO T/R - 7637/1 test pulse	Test level	Test level II	Test level III	Test level IV	Test level delays and impedance
1	-25V	-50V	-75V	-100V	2ms, 10Ω
2	+25V	+50V	+75V	+100V	$0.2ms, 10\Omega$
3a	-25V	-50V	-100V	-150V	0.1 μs, 50Ω
3b	+25V	+50V	+75V	+100V	υ. 1μ5, 3022
4	-4V	-5V	-6V	-7V	100ms, 0.01Ω
5	+26.5V	+46.5V	+66.5V	+86.5V	400ms, 2Ω

ISO T/R - 7637/1 test pulse	Test levels result	Test levels result	Test levels result	Test levels result
1				
2				
3a	C	С	С	С
3b	C			
4				
5 ⁽¹⁾		Е	Е	Е

^{1.} For load dump exceeding the above value a centralized suppressor must be adopted.

Class	Contents
С	All functions of the device performed as designed after exposure to disturbance.
E	One or more functions of the device did not perform as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device.

2.3 Electrical characteristics curves

Figure 8. On state supply current

I_S (mA)

8

7

V_{CC} = 13V, no PWM

6

IN A or IN B = 5V

5

4

3

2

1

0

-50 -25 0 25 50 75 100 125 150 175

T_c (°C)

Figure 9. Off state supply current

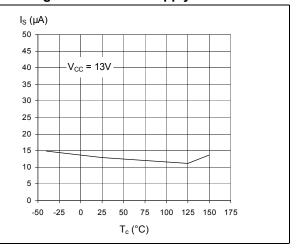


Figure 10. High-level input current

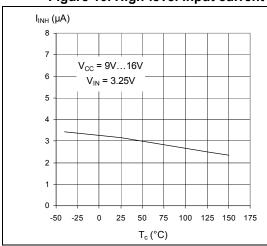


Figure 11. Input clamp voltage

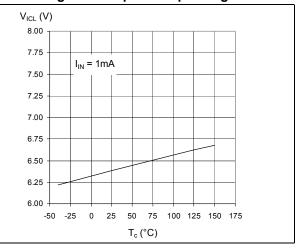


Figure 12. Input high-level voltage

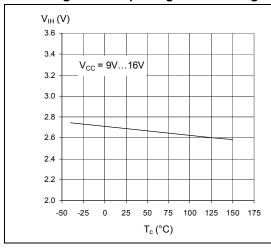
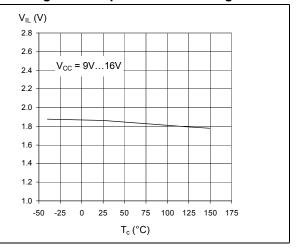



Figure 13. Input low-level voltage

16/34 DocID10833 Rev 7

57

Figure 14. Input hysteresis voltage

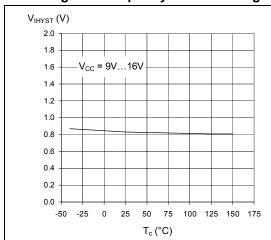


Figure 15. High-level enable pin current

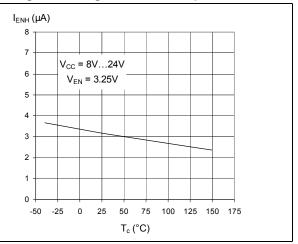
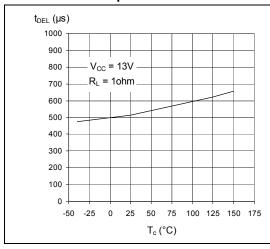



Figure 16. Delay time during change of operation mode

Figure 17. Enable clamp voltage

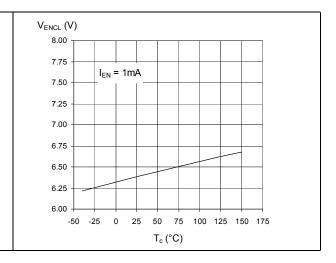


Figure 18. High-level enable voltage

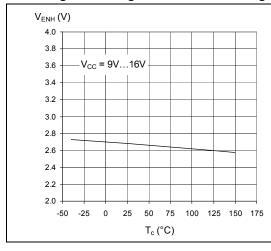
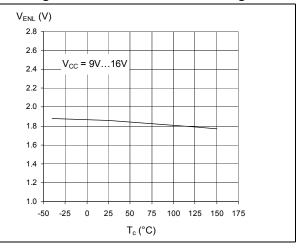



Figure 19. Low-level enable voltage

57/

DocID10833 Rev 7

17/34

Figure 20. PWM high-level voltage

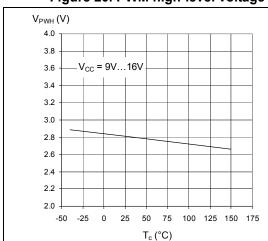


Figure 21. PWM low-level voltage

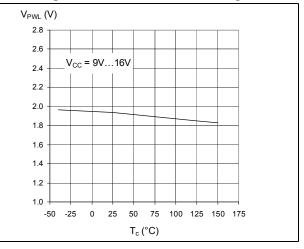


Figure 22. PWM high-level current

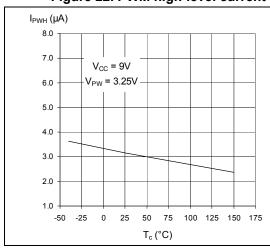


Figure 23. Overvoltage shutdown

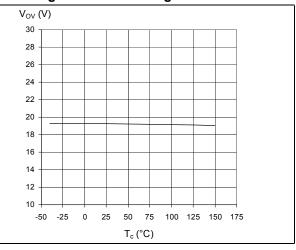


Figure 24. Undervoltage shutdown

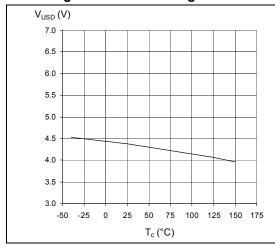
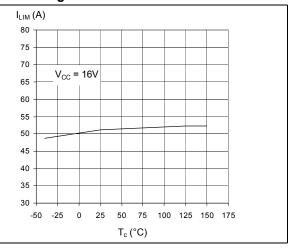
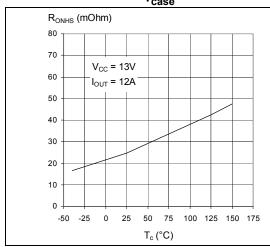




Figure 25. Current limitation

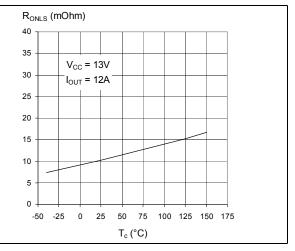
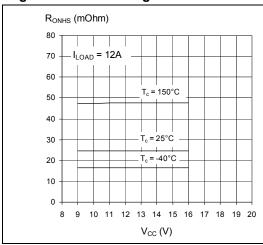



Figure 28. On state high-side resistance vs V_{CC} Figure 29. On state low-side resistance vs V_{CC}

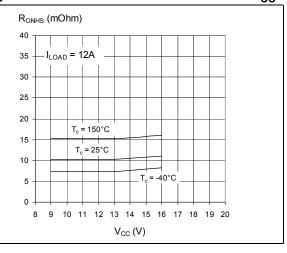


Figure 30. Output voltage rise time

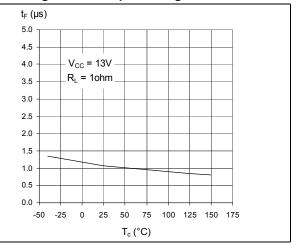
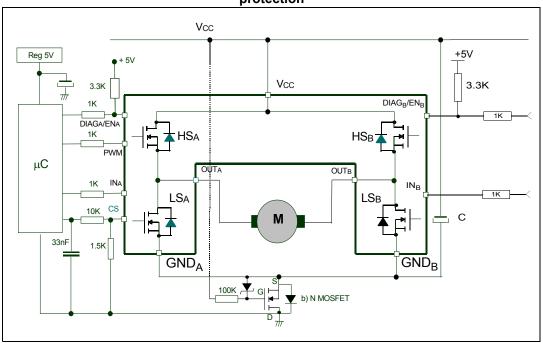



Figure 31. Output voltage fall time

57/

DocID10833 Rev 7


19/34

3 Application information

In normal operating conditions the $DIAG_X/EN_X$ pin is considered as an input pin by the device. This pin must be externally pulled high.

PWM pin usage: In all cases, a "0" on the PWM pin will turn off both LS_A and LS_B switches. When PWM rises back to "1", LS_A or LS_B turn on again depending on the input pin state.

Figure 32. Typical application circuit for DC to 20 kHz PWM operation short circuit protection

Note:

The value of the blocking capacitor (C) depends on the application conditions and defines voltage and current ripple onto supply line at PWM operation. Stored energy of the motor inductance may fly back into the blocking capacitor, if the bridge driver goes into tristate. This causes a hazardous overvoltage if the capacitor is not big enough. As basic orientation, 500µF per 10A load current is recommended.

In case of a fault condition the DIAG_X/EN_X pin is considered as an output pin by the device.

The fault conditions are:

overtemperature on one or both high sides

short to battery condition on the output (saturation detection on the low-side power MOSFET)

Possible origins of fault conditions may be:

 OUT_A is shorted to ground \rightarrow overtemperature detection on high side A

 OUT_A is shorted to $\mathsf{V}_\mathsf{CC} o \mathsf{low}\text{-side}$ power MOSFET saturation detection

When a fault condition is detected, the user can know which power element is in fault by monitoring the IN_A , IN_B , $DIAG_A/EN_A$ and $DIAG_B/EN_B$ pins.

In any case, when a fault is detected, the faulty leg of the bridge is latched off. To turn on the respective output (OUT_X) again, the input signal must rise from low to high level.

57

3.1 Reverse battery protection

Three possible solutions can be considered:

a Schottky diode D connected to V_{CC} pin

an N-channel MOSFET connected to the GND pin (see Figure 32: Typical application circuit for DC to 20 kHz PWM operation short circuit protection on page 20)

a P-channel MOSFET connected to the V_{CC} pin

The device sustains no more than -30 A in reverse battery conditions because of the two body diodes of the power MOSFETs. Additionally, in reverse battery condition the I/Os of Root part number 1 are pulled down to the V_{CC} line (approximately -1.5 V). A series resistor must be inserted to limit the current sunk from the microcontroller I/Os. If I_{Rmax} is the maximum target reverse current through µC I/Os, the series resistor is:

$$R = \frac{V_{IOs} - V_{CC}}{I_{Rmax}}$$

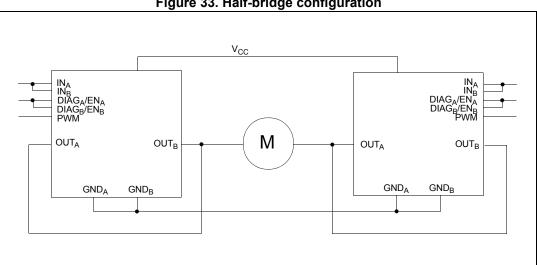


Figure 33. Half-bridge configuration

Note:

The VNH3ASP30-E can be used as a high power half-bridge driver achieving an On resistance per leg of 21 m Ω .

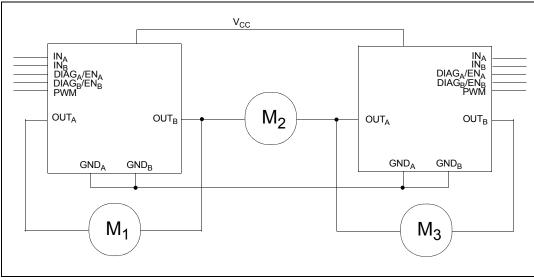


Figure 34. Multi-motor configuration

Note:

The VNH3ASP30-E can easily be designed in multi-motor driving applications such as seat positioning systems, where only one motor must be driven at a time. The $DIAG_X/EN_X$ pins allow the unused half-bridges to be put into high impedance.

57/

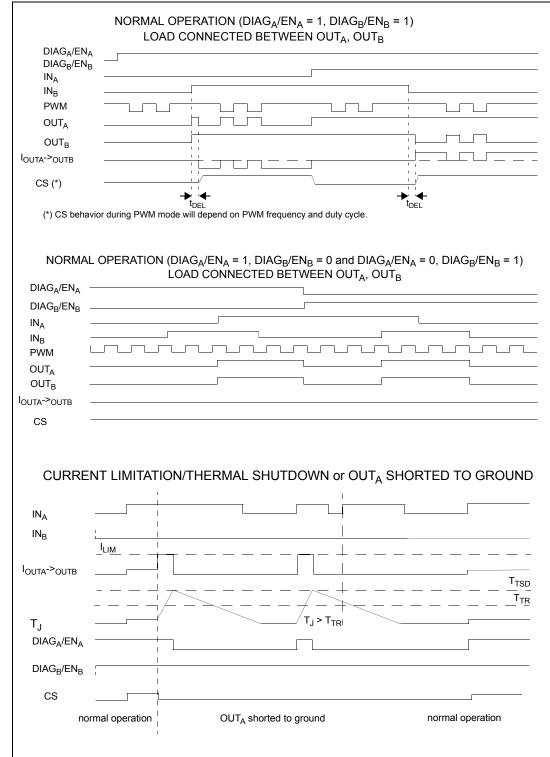
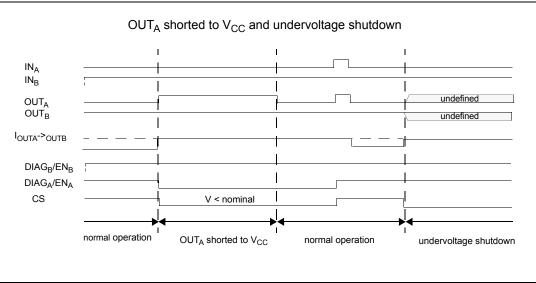
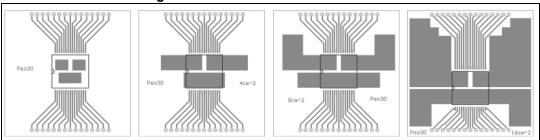


Figure 35. Waveforms in full-bridge operation

5

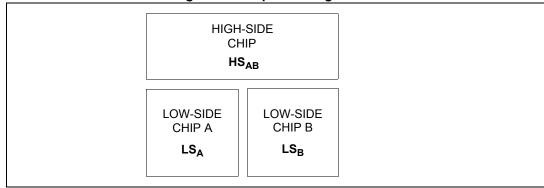
DocID10833 Rev 7




Figure 36. Waveforms in full-bridge operation (continued)

4 Package and PCB thermal data

4.1 MultiPowerSO-30 thermal data


Figure 37. MultiPowerSO-30™ PC board

Note:

Layout condition of Rth and Zth measurements (PCB FR4 area= 58 mm x 58 mm, PCB thickness=2 mm, Cu thickness=35 μ m, Copper areas: from minimum pad lay-out to 16 cm2).

Figure 38. Chipset configuration

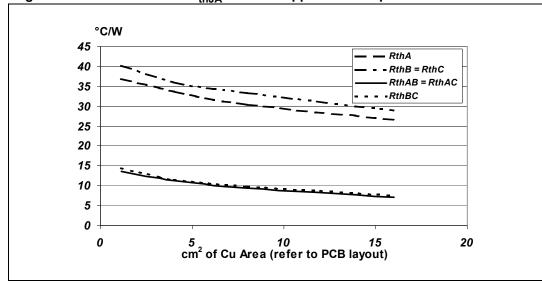


Figure 39. Auto and mutual R_{thJA} vs PCB copper area in open box free air condition

4.1.1 Thermal calculation in clockwise and anti-clockwise operation in Steady-state mode

Table 15. Thermal calculation in clockwise and anti-clockwise operation in steadystate mode

HSA	HS _B	LSA	LS _B	T _{JHSAB}	T _{JLSA}	T _{JLSB}
ON	OF	FF.	ON	$P_{dHSA} \times R_{thHS} + P_{dLSB} \times R_{thHSLS} + T_{A}$	P _{dHSA} x R _{thHSLS} + P _{dLSB} x R _{thLSLS} + T _A	$\begin{array}{c} P_{dHSA} x R_{thHSLS} + P_{dLSB} \\ x R_{thLS} + T_{A} \end{array}$
OFF	0	N	OFF	$P_{dHSB} \times R_{thHS} + P_{dLSA} \times R_{thHSLS} + T_{A}$	P _{dHSB} x R _{thHSLS} + P _{dLSA} x R _{thLS} + T _A	$\begin{array}{c} P_{dHSB} x R_{thHSLS} + P_{dLSA} \\ x R_{thLSLS} + T_{A} \end{array}$

4.1.2 Thermal resistances definition (values according to the PCB heatsink area)

 $\mathbf{R_{thHS}}$ = $\mathbf{R_{thHSA}}$ = $\mathbf{R_{thHSB}}$ = High-Side Chip Thermal Resistance Junction to Ambient (HS_A or HS_B in ON state)

 $R_{thLS} = R_{thLSA} = R_{thLSB} = Low-Side Chip Thermal Resistance Junction to Ambient$

 R_{thHSLS} = $R_{thHSALSB}$ = $R_{thHSBLSA}$ = Mutual Thermal Resistance Junction to Ambient between High-Side and Low-Side Chips

 R_{thLSLS} = $R_{thLSALSB}$ = Mutual Thermal Resistance Junction to Ambient between Low-Side Chips

4.1.3 Thermal calculation in Transient mode^(a)

$$T_{JHSAB} = Z_{thHS} \times P_{dHSAB} + Z_{thHSLS} \times (P_{dLSA} + P_{dLSB}) + T_A$$

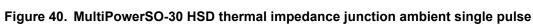
5/

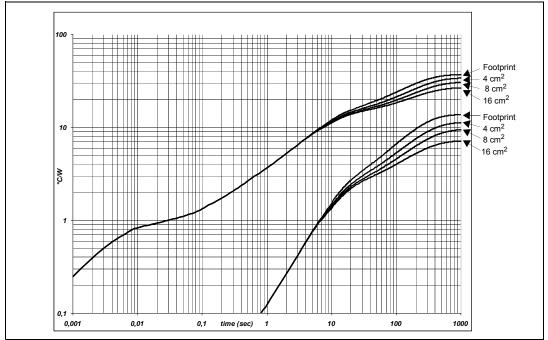
a. Calculation is valid in any dynamic operating condition. P_d values set by user.

$$T_{JLSA} = Z_{thHSLS} \times P_{dHSAB} + Z_{thLS} \times P_{dLSA} + Z_{thLSLS} \times P_{dLSB} + T_{A}$$
 $T_{JLSB} = Z_{thHSLS} \times P_{dHSAB} + Z_{thLSLS} \times P_{dLSA} + Z_{thLS} \times P_{dLSB} + T_{A}$

4.1.4 Single pulse thermal impedance definition (values according to the PCB heatsink area)

Z_{thHS} = High-Side Chip Thermal Impedance Junction to Ambient


 $\mathbf{Z}_{\mathsf{thLS}}$ = $\mathbf{Z}_{\mathsf{thLSA}}$ = $\mathbf{Z}_{\mathsf{thLSB}}$ = Low-Side Chip Thermal Impedance Junction to Ambient


 $\mathbf{Z}_{\text{thHSLS}}$ = $Z_{\text{thHSABLSA}}$ = $Z_{\text{thHSABLSB}}$ = Mutual Thermal Impedance Junction to Ambient between High-Side and Low-Side Chips

 $\mathbf{Z}_{\mathsf{thLSLS}} = \mathbf{Z}_{\mathsf{thLSALSB}} = \mathsf{Mutual}$ Thermal Impedance Junction to Ambient between Low-Side Chips

Equation 1: pulse calculation formula

$$\begin{aligned} \textbf{Z}_{\textbf{TH}\boldsymbol{\delta}} &= R_{TH} \cdot \delta + Z_{THtp} (1 - \delta) \\ &\text{where } \delta = t_p / T \end{aligned}$$

577

DocID10833 Rev 7

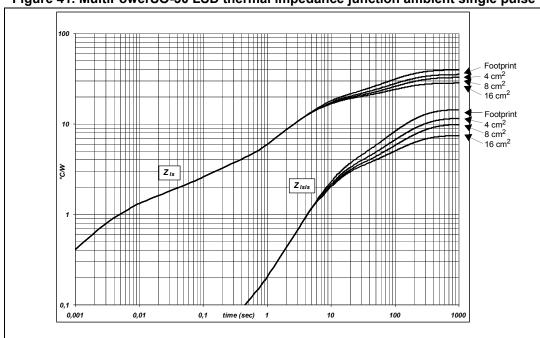


Figure 41. MultiPowerSO-30 LSD thermal impedance junction ambient single pulse

Figure 42. Thermal fitting model of an H-bridge in MultiPowerSO-30

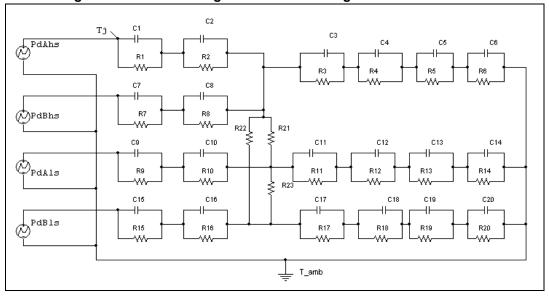


Table 16. Thermal parameters⁽¹⁾

Area/island (cm ²)	Footprint	4	8	16
R1 = R7 (°C/W)	0.05			
R2 = R8 (°C/W)	0.3			
R3 (°C/W)	0.5			
R4 (°C/W)	1.3			
R5 (°C/W)	14			
R6 (°C/W)	44.7	39.1	31.6	23.7

577

28/34

Table 16. Thermal parameters⁽¹⁾ (continued)

	•	•	,	
R9 = R15 (°C/W)	0.11			
R10 = R16 (°C/W)	0.21			
R11 = R17 (°C/W)	0.42			
R12 = R18 (°C/W)	1.5			
R13 = R19 (°C/W)	20			
R14 = R20 (°C/W)	46.9	36.1	30.4	20.8
R21 = R22 = R23 (°C/W)	115			
C1 = C7 (W.s/°C)	0.005			
C2 = C8 (W.s/°C)	0.008			
C3	0.01			
C4 = C13 = C19 (W.s/°C)	0.3			
C5 (W.s/°C)	0.6			
C6 (W.s/°C)	5	7	9	11
C9 = C15 (W.s/°C)	0.0016			
C10 = C16 (W.s/°C)	0.0032			
C11 = C17 (W.s/°C)	0.0053			
C12 = C18 (W.s/°C)	0.075			
C14 = C20 (W.s/°C)	2.5	3.5	4.5	5.5

^{1.} The blank space means that the value is the same as the previous one.

DocID10833 Rev 7

Package information VNH3ASP30-E

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

5.1 MultiPowerSO-30 package information

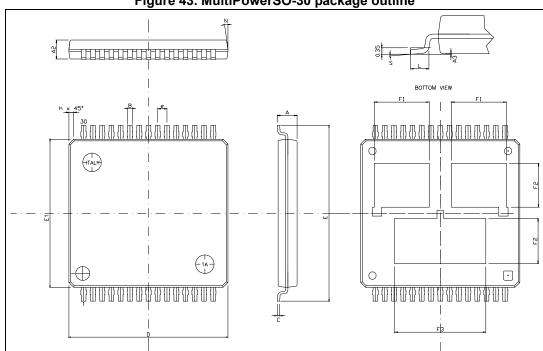
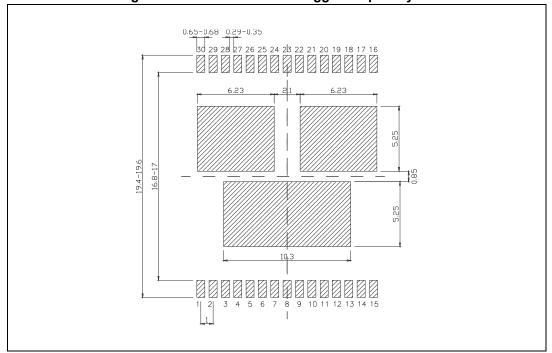


Figure 43. MultiPowerSO-30 package outline

Table 17. MultiPowerSO-30 mechanical data

Cumbal	Millimeters						
Symbol	Min	Тур	Max				
Α			2.35				
A2	1.85		2.25				
A3	0		0.1				
В	0.42		0.58				
С	0.23		0.32				
D	17.1	17.2	17.3				
E	18.85		19.15				
E1	15.9	16	16.1				
е		1					
F1	5.55		6.05				
F2	4.6		5.1				


5/

VNH3ASP30-E Package information

Table 17. MultiPowerSO-30 mechanical data (continued)

Symbol	Millimeters		
	Min	Тур	Max
F3	9.6		10.1
L	0.8		1.15
N			10 deg
S	0 deg		7 deg

Figure 44. MultiPowerSO-30 suggested pad layout

Package information VNH3ASP30-E

5.2 Packing information

Note: The devices are packed in tape and reel shipments (see the Device summary on page 1).

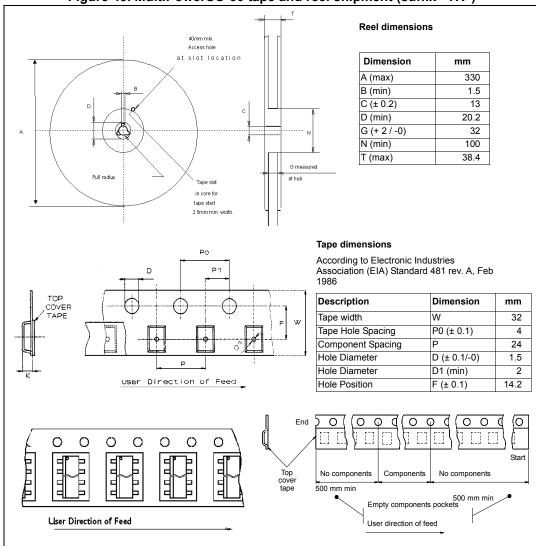


Figure 45. MultiPowerSO-30 tape and reel shipment (suffix "TR")

VNH3ASP30-E Revision history

6 Revision history

Table 18. Document revision history

Date	Revision	Changes
Sep-2004	1	First issue
Dec-2005	2	Resistance per leg modification Figure 33: Half-bridge configuration on page 21
11-Feb-2007	3	Document converted into new ST template. Changed Datasheet - production data on page 1 to add ECOPACK® package Removed Table 7. Thermal Data from page 4 Table 6: Power section on page 9: Changed test conditions and max values for supply current in Off state and On state Table 7: Logic inputs (INA, INB, ENA, ENB) on page 9: Modified parameter descriptions for I _{INL} and I _{INH} Table 8: PWM on page 10: Modified parameter descriptions for I _{PWL} and I _{PWH} Table 10: Protection and diagnostic on page 10: Modified all symbols except I _{LIM} and V _{CLP} Table 11 on page 11: Changed test conditions for K ₂ analog sense current drift Section Table 13.: Truth table in fault conditions (detected on OUTA) on page 14: Changed first of two fault conditions Figure 6: Definition of the high-side switching times on page 13: Added vertical limitation line to left side of t _{D(off)} arrow Figure 36: Waveforms in full-bridge operation (continued) on page 24: Added dotted vertical limitation lines Added Section 2.3: Electrical characteristics curves on page 16 Added Section 4: Package and PCB thermal data on page 25 Added Section 5: Package information on page 30 Updated disclaimer on last page
01-Jun-2007	4	Document reformatted. Table 6: Power section on page 9: changed test conditions and max values for supply current in Off state
06-Feb-2008	5	Corrected Heat Slug numbers in <i>Table 3: Pin definitions and functions</i> .
23-Sep-2013	6	Updated Disclaimer.
11-Jan-2017	7	 Removed all information relative to tube packing of the product Modified Section 5: Package information Added AEC-Q100 qualified in the Features section Minor text edits throughout the document

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

57