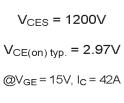
International Rectifier

IRG4PSH71KDPbF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE


Features

- Hole-less clip/pressure mount package compatible with TO-247 and TO-264, with reinforced pins
- High short circuit rating IGBTs, optimized for motorcontrol
- Minimum switching losses combined with low conduction losses
- Tightest parameter distribution
- IGBT co-packaged with ultrafast soft recovery antiparallel diode
- · Creepage distance increased to 5.35mm
- Lead-Free

Benefits

- · Highest current rating copack IGBT
- Maximum power density, twice the power handling of the TO-247, less space than TO-264
- HEXFREDTM diode optimized for operation with IGBT, to minimize EMI, noise and switching losses

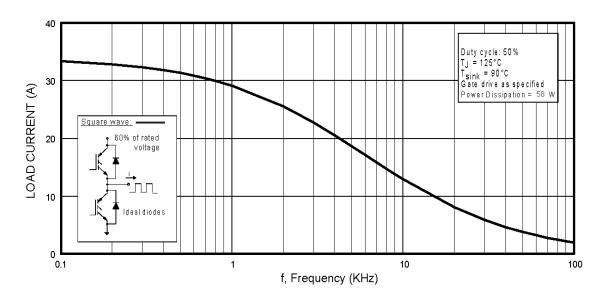
Short Circuit Rated UltraFast IGBT

n-channel

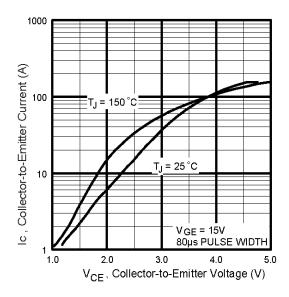
Absolute Maximum Ratings

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Voltage	1200	V
I _C @ T _C = 25°C	Continuous Collector Current	78	
I _C @ T _C = 100°C	Continuous Collector Current	42	
I _{CM}	Pulsed Collector Current ①	156	Α
I _{LM}	Clamped Inductive Load Current ②	156	
I _F @ T _C = 100°C	Diode Continuous Forward Current	42	
I _{FM}	Diode Maximum Forward Current	156	
t _{sc}	Short Circuit Withstand Time	10	μs
V _{GE}	Gate-to-Emitter Voltage	± 20	V
P _D @ T _C = 25°C	Maximum Power Dissipation	350	⊢ w
P _D @ T _C = 100°C	Maximum Power Dissipation	140	VV
TJ	Operating Junction and	-55 to +150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 sec.	300 (0.063 in. (1.6mm) from case)	

Thermal Resistance\ Mechanical


	Parameter	Min.	Тур.	Max.	Units
R ₀ JC	Junction-to-Case - IGBT			0.36	
$R_{\theta JC}$	Junction-to-Case - Diode			0.69	°C/W
$R_{\theta CS}$	Case-to-Sink, flat, greased surface		0.24		
ReJA	Junction-to-Ambient, typical socket mount			38	
	Recommended Clip Force	20.0(2.0)			N (kgf)
	Weight		6 (0.21)		g (oz)

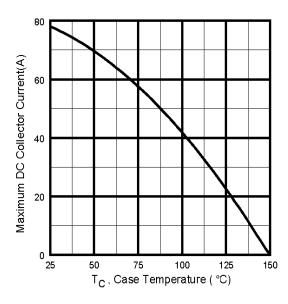
Electrical Characteristics @ T_J = 25°C (unless otherwise specified)


			_				
	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage③	1200	—	_	V	V_{GE} = 0V, I_{C} = 250 μ A	
$\Delta V_{(BR)CES} \Delta T_{J}$	Temperature Coeff. of Breakdown Voltage	_	1.1	_	V/°C	V_{GE} = 0V, I_{C} = 10mA	
V _{CE(on)}	Collector-to-Emitter Saturation Voltage	_	2.97	3.9		I _C = 42A	V _{GE} = 15V
		_	3.44	_	V	I _C = 78A	See Fig. 2, 5
		_	2.60	_		I _C = 42A, T _J = 150°C	
$V_{\text{GE(th)}}$	Gate Threshold Voltage	3.0	_	6.0		$V_{CE} = V_{GE}$, $I_C = 250 \mu A$	
$\Delta V_{\text{GE(th)}}\!\!\!/\!\!\Delta T_{\text{J}}$	Temperature Coeff. of Threshold Voltage	_	-12	_	mV/°C	$V_{CE} = V_{GE}$, $I_C = 1.5 mA$	
g fe	Forward Transconductance ④	25	38	_	S	$V_{CE} = 50V, I_{C} = 42A$	
I _{CES}	Zero Gate Voltage Collector Current	_	_	500	μΑ	$V_{GE} = 0V, V_{CE} = 1200V$	
		_	_	10	mΑ	$V_{GE} = 0V$, $V_{CE} = 1200V$, T _J = 150°C
V _{FM}	Diode Forward Voltage Drop	_	2.5	3.7	V	I _C = 42A	See Fig. 13
		_	2.4	_	v	I _C = 42A, T _J = 150°C	
I _{GES}	Gate-to-Emitter Leakage Current	_	_	±100	nΑ	V _{GE} = ±20V	

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Мах.	Units	Conditions
Qg	Total Gate Charge (turn-on)	_	410	610		I _C = 42A
Qge	Gate - Emitter Charge (turn-on)	_	47	70	nC	V _{CC} = 400V See Fig.8
Q _{gc}	Gate - Collector Charge (turn-on)	_	145	220		V _{GE} = 15V
t _{d(on)}	Turn-On Delay Time	_	67	_		
t _r	Rise Time	_	84	_	ns	T _J = 25°C
t _{d(off)}	Turn-Off Delay Time	_	230	350	113	I _C = 42A, V _{CC} = 800V
tf	Fall Time	_	130	190		V_{GE} = 15V, R_{G} = 5.0 Ω
Eon	Turn-On Switching Loss	_	5.68	_		Energy losses include "tail"
E _{off}	Turn-Off Switching Loss	_	3.23	_	mJ	and diode reverse recovery
Ets	Total Switching Loss	—	8.90	11.6		See Fig. 9,10,18
t _{sc}	Short Circuit Withstand Time	10	_	_	μs	V _{CC} = 720V, T _J = 125°C
						V_{GE} = 15V, R_{G} = 5.0 Ω
t _{d(on)}	Turn-On Delay Time	_	65	_		T _J = 150°C, See Fig. 11,18
tr	Rise Time	_	87	_		I _C = 42A, V _{CC} = 800V
t _{d(off)}	Turn-Off Delay Time	_	370	_	ns	V_{GE} = 15V, R_{G} = 5.0 Ω
tf	Fall Time	_	290	_		Energy losses include "tail"
Ets	Total Switching Loss	_	13.7	_	mJ	and diode reverse recovery
LE	Internal Emitter Inductance	_	13	_	nΗ	Measured 5mm from package
Cies	Input Capacitance	_	5770	_		V _{GE} = 0V
Coes	Output Capacitance	_	400	_	pF	V _{CC} = 30V See Fig. 7
Cres	Reverse Transfer Capacitance	_	100	_		f = 1.0MHz
trr	Diode Reverse Recovery Time	_	107	160	ns	T _J = 25°C See Fig.
		_	160	240		T _J = 125°C 14 I _F = 42A
Im	Diode Peak Reverse Recovery Current	_	10	15	Α	T _J = 25°C See Fig.
		_	16	24		T _J = 125°C 15 V _R = 200V
Qm	Diode Reverse Recovery Charge	_	680	1020	nC	T _J = 25°C See Fig.
		_	1400	2100		T _J = 125°C 16 di/dt = 200A/µs
di _{(rec)M} /dt	Diode Peak Rate of Fall of Recovery	_	250	_	A/µs	T _J = 25°C See Fig.
, ,	During t _b	_	320	_		T _J = 125°C 17

Fig. 1 - Typical Load Current vs. Frequency (Load Current = I_{RMS} of fundamental)



1000 (Y) tuaim 100 T_J = 150 °C T_J = 25 °C: V_{CC} = 50V 5µs PULSE WIDTH V_{GE}, Gate-to-Emitter Voltage (V)

Fig. 2 - Typical Output Characteristics

Fig. 3 - Typical Transfer Characteristics

International IOR Rectifier

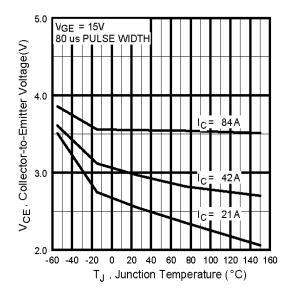


Fig. 4 - Maximum Collector Current vs. Case Temperature

Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature

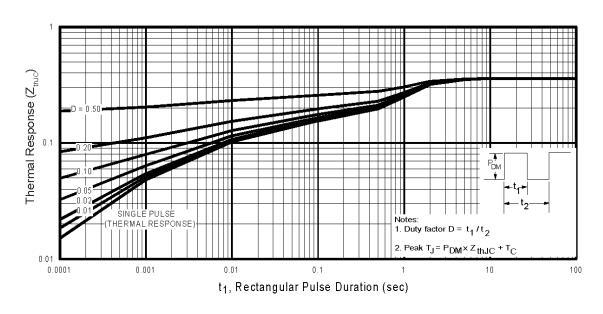
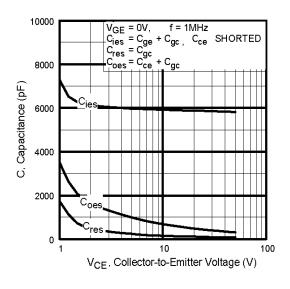
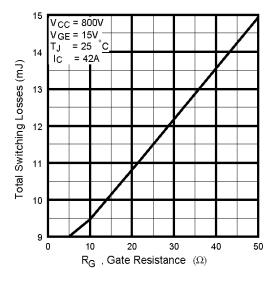



Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

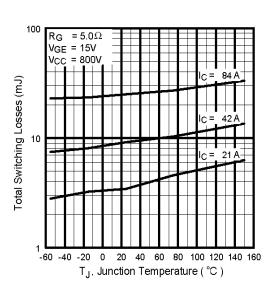
International TOR Rectifier

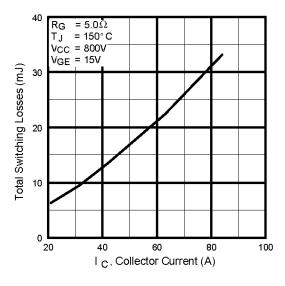

IRG4PSH71KDPbF

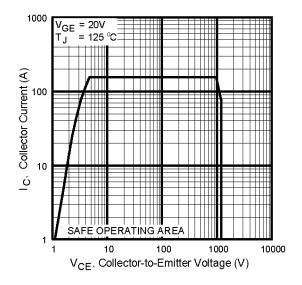
20 VCC = 400V | C = 42A | 15 | 10 | 10 | 200 | 300 | 400 | 500 | Q_G , Total Gate Charge (nC)

Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage

Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage




Fig. 9 - Typical Switching Losses vs. Gate Resistance


Fig. 10 - Typical Switching Losses vs. Junction Temperature

www.irf.com

5

International
TOR Rectifier

Collector-to-Emitter Current

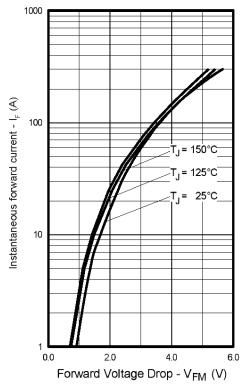


Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current

Fig. 14 - Typical Reverse Recovery vs. dif/dt

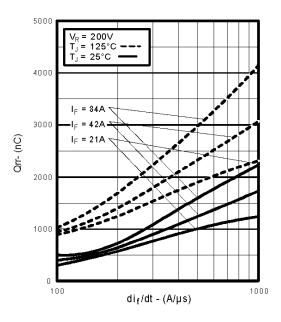
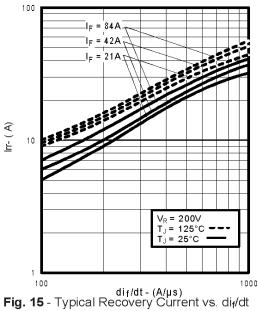



Fig. 16 - Typical Stored Charge vs. dif/dt www.irf.com

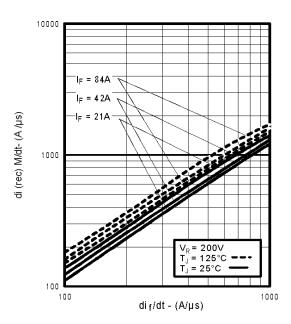


Fig. 17 - Typical di_{(rec)M}/dt vs. di_f/dt

7

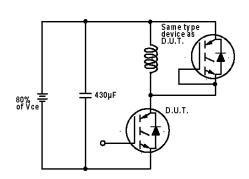


Fig. 18a - Test Circuit for Measurement of $I_{LM}, \, \boldsymbol{\Xi}_{on}, \, \boldsymbol{\Xi}_{off(diode)}, \, t_{rr}, \, \boldsymbol{Q}_{rr}, \, I_{rr}, \, t_{d(on)}, \, t_{r}, \, t_{d(off)}, \, t_{f}$

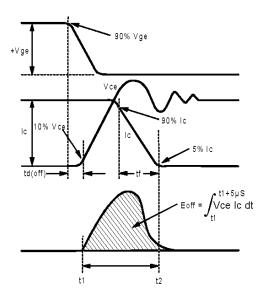


Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining E_{off} , $t_{d(off)}$, t_{f}

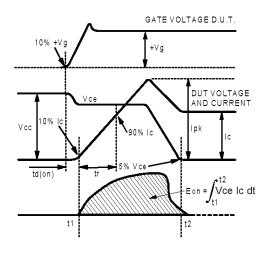


Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining E_{on} , $t_{d(on)}$, t_{r}

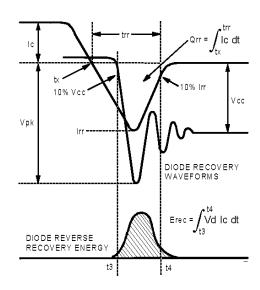


Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining E_{rec} , t_{rr} , Q_{rr} , I_{rr}

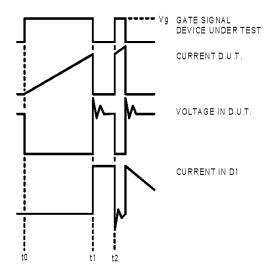
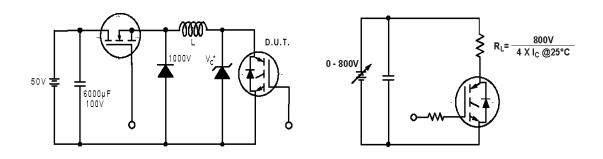


Figure 18e. Macro Waveforms for Figure 18a's Test Circuit



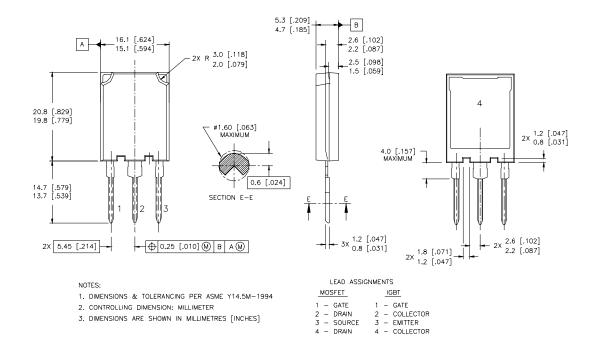

Figure 19. Clamped Inductive Load Test Circuit

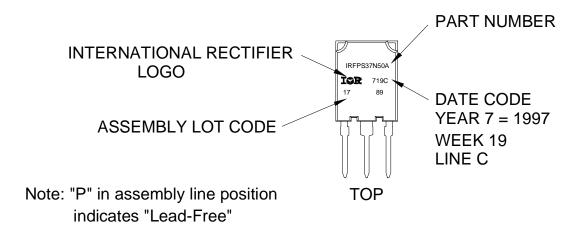
Figure 20. Pulsed Collector Current Test Circuit

International

TOR Rectifier

Case Outline and Dimensions — Super-247

Notes:


- ① Repetitive rating: V_{GE}=20V; pulse width limited by maximum junction temperature (figure 20)
- V_{CC}=80%(V_{CES}), V_{GE}=20V, L=10 μ H, R_G= 5.0Ω (figure 19)
- ③ Pulse width ≤ $80\mu s$; duty factor ≤ 0.1%
- ⊕ Pulse width 5.0µs, single shot

International
TOR Rectifier

IRG4PSH71KDPbF

Super-247 (TO-274AA) Part Marking Information

EXAMPLE: THIS IS AN IRFPS37N50A WITH ASSEMBLY LOT CODE 1789 ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 09/04