ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
MC74VHC259

8-Bit Addressable Latch/1-of-8 Decoder CMOS Logic Level Shifter with LSTTL-Compatible Inputs

The MC74VHC259 is an 8-bit Addressable Latch fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL devices while maintaining CMOS low power dissipation

The VHC259 is designed for general purpose storage applications in digital systems. The device has four modes of operation as shown in the mode selection table.. In the addressable latch mode, the data on Data In is written into the addressed latch. The addressed latch follows the data input with all non-addressed latches remaining in their previous states. In the memory mode, all latches remain in their previous state and are unaffected by the Data or Address inputs. In the one-of-eight decoding or demultiplexing mode, the addressed output follows the state of Data In with all other outputs in the LOW state. In the Reset mode, all outputs are LOW and unaffected by the address and data inputs. When operating the VHC259 as an addressable latch, changing more than one bit of the address could impose a transient wrong address. Therefore, this should only be done while in the memory mode.

The MC74VHC259 input structure provides protection when voltages up to 7 V are applied, regardless of the supply voltage. This allows the MC74VHC259 to be used to interface 5 V circuits to 3 V circuits.

- High Speed: $\mathrm{t}_{\mathrm{PD}}=7.6 \mathrm{~ns}(\mathrm{Typ})$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
- Low Power Dissipation: $\mathrm{I}_{\mathrm{CC}}=2 \mu \mathrm{~A}(\mathrm{Max})$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High Noise Immunity: $\mathrm{V}_{\mathrm{NIH}}=\mathrm{V}_{\mathrm{NIL}}=28 \% \mathrm{~V}_{\mathrm{CC}}$
- CMOS-Compatible Outputs: $\mathrm{V}_{\mathrm{OH}}>0.8 \mathrm{~V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{OL}}<0.1 \mathrm{~V}_{\mathrm{CC}} @ \mathrm{Load}$
- Power Down Protection Provided on Inputs and Outputs
- Balanced Propagation Delays
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- ESD Performance: HBM > 2000 V
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

Figure 1. Pin Assignment

ON Semiconductor ${ }^{\text {m }}$
http://onsemi.com
MARKING DIAGRAMS

SOIC-16
D SUFFIX
CASE 751B

A = Assembly Location
L, WL = Wafer Lot
Y, YY = Year
W, WW = Work Week
G or $\mathbf{~}=$ Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
MC74VHC259DG	SOIC-16	48 Units/Rail
MC74VHC259DR2G	SOIC-16	2500 Units/Reel
MC74VHC259DTG	TSSOP-16	96 Units/Rail
MC74VHC259DTR2G	TSSOP-16	2500 Units/Reel

Figure 2. Logic Diagram

Figure 3. IEC Logic Symbol

LATCH SELECTION TABLE

Address Inputs		Latch Addressed	
C	B		Q0
L	L	L	Q1
L	L	H	Q2
L	H	L	Q3
L	H	H	Q4
H	L	L	Q5
H	L	H	Q6
H	H	L	Q7
H	H	H	

MODE SELECTION TABLE

Enable	Reset	Mode
L	H	Addressable Latch
H	H	Memory
L	L	8-Line Demultiplexer
H	L	Reset

Figure 4. Expanded Logic Diagram

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {CC }}$	Positive DC Supply Voltage	-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Digital Input Voltage	-0.5 to +7.0	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{IK}	Input Diode Current	-20	mA
$\mathrm{l}_{\text {OK }}$	Output Diode Current	± 20	mA
Iout	DC Output Current, per Pin	± 25	mA
I_{Cc}	DC Supply Current, $\mathrm{V}_{\text {CC }}$ and GND Pins	± 75	mA
P_{D}	$\begin{array}{lr}\text { Power Dissipation in Still Air } & \text { SOIC Package } \\ \text { TSSOP }\end{array}$	$\begin{aligned} & 200 \\ & 180 \end{aligned}$	mW
TSTG	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ESD }}$	ESD Withstand Voltage Human Body Model (Note 1.) Machine Model (Note 2.) Charged Device Model (Note 3.) Cer	$\begin{gathered} >2000 \\ >200 \\ >2000 \end{gathered}$	V
LLATCH-UP	Latch-Up Performance Above V_{CC} and Below GND at $125^{\circ} \mathrm{C}$ (Note 4.)	± 300	mA
θ_{JA}	$\begin{array}{lr}\text { Thermal Resistance, Junction to Ambient } & \text { SOIC Package } \\ \text { TSSOP }\end{array}$	$\begin{aligned} & \hline 143 \\ & 164 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Tested to EIA/JESD22-A114-A
2. Tested to EIA/JESD22-A115-A
3. Tested to JESD22-C101-A
4. Tested to EIA/JESD78

RECOMMENDED OPERATING CONDITIONS

Symbol	Characteristics	Min	Max	Unit
V_{CC}	DC Supply Voltage	2.0	5.5	V
$\mathrm{~V}_{\mathrm{IN}}$	DC Input Voltage	0	5.5	V
$\mathrm{~V}_{\mathrm{OUT}}$	DC Output Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature Range, all Package Types	-55	125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Input Rise or Fall Time	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	0	20

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1\% BOND FAILURES

| Junction
 Temperature${ }^{\circ} \mathbf{C}$ |
| :---: | :---: | :---: | Time, Hours \quad Time, Years

Figure 5. Failure Rate vs. Time Junction Temperature

DC CHARACTERISTICS (Voltages Referenced to GND)

Symbol	Parameter	Condition	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
V_{IH}	Minimum High-Level Input Voltage		$\begin{gathered} \hline 2.0 \\ 3.0 \text { to } 5.5 \end{gathered}$	$\begin{gathered} 1.5 \\ v_{\operatorname{CCX}} 0.7 \end{gathered}$			$\begin{gathered} 1.5 \\ \mathrm{v}_{\mathrm{CCX}} 0.7 \end{gathered}$		V
VIL	Maximum Low-Level Input Voltage		$\begin{gathered} 2.0 \\ 3.0 \text { to } 5.5 \end{gathered}$			$\begin{gathered} 0.5 \\ \mathrm{v}_{\mathrm{CCX}} 0.3 \end{gathered}$		$\begin{gathered} 0.5 \\ v_{C C X} 0.3 \end{gathered}$	V
V_{OH}	Maximum High-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{IOH}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$		V
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA} \\ & \mathrm{lOL}=8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 2.58 \\ & 3.94 \end{aligned}$			$\begin{gathered} 2.48 \\ 3.8 \end{gathered}$		V
V_{OL}	Maximum Low-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OL}}=50 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & \hline 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA} \\ & \mathrm{lOL}=8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \\ & \hline \end{aligned}$			$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	V
IIN	Input Leakage Current	$\mathrm{V}_{1 \mathrm{~N}}=5.5 \mathrm{~V}$ or GND	0 to 5.5			± 0.1		± 1.0	$\mu \mathrm{A}$
ICC	Maximum Quiescent Supply Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}$ or GND	5.5			4.0		40.0	$\mu \mathrm{A}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS (Input $t_{r}=t_{f}=3.0 n s$)

Symbol	Parameter	Test Conditions		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$\begin{gathered} -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq \\ 125^{\circ} \mathrm{C} \end{gathered}$		Unit
				Min	Typ	Max	Min	Max	Min	Max	
tplh,$\mathrm{t}_{\mathrm{PHL}}$	Maximum Propagation Delay, Data to Output (Figures 6 and 11)	$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & \hline 6.0 \\ & 8.5 \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 12.5 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 14.5 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 14.5 \end{aligned}$	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 4.9 \\ & 7.0 \end{aligned}$	$\begin{gathered} \hline 8.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} \hline 9.5 \\ 11.5 \end{gathered}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} \hline 9.5 \\ 11.5 \end{gathered}$	
$\begin{aligned} & \text { tpLH, } \\ & \text { tpHL } \end{aligned}$	Maximum Propagation Delay, Address Select to Output (Figures 7 and 11)	$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & \hline 6.0 \\ & 8.5 \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 12.5 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 14.5 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 14.5 \end{aligned}$	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V}$	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 4.9 \\ & 7.0 \end{aligned}$	$\begin{gathered} \hline 8.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} \hline 9.5 \\ 11.5 \end{gathered}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} \hline 9.5 \\ 11.5 \end{gathered}$	
$\begin{aligned} & \text { tpLH, } \\ & \text { tpHL } \end{aligned}$	Maximum Propagation Delay, Enable to Output (Figures 8 and 11)	$\mathrm{V}_{\text {CC }}=3.3 \pm 0.3 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & \hline 6.0 \\ & 8.5 \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 12.5 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 14.5 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 14.5 \end{aligned}$	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 4.9 \\ & 7.0 \end{aligned}$	$\begin{gathered} \hline 8.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} \hline 9.5 \\ 11.5 \end{gathered}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} \hline 9.5 \\ 11.5 \end{gathered}$	
tPHL	Maximum Propagation Delay, Reset to Output (Figures 9 and 11)	$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & \hline 6.0 \\ & 8.5 \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 12.5 \end{gathered}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 14.5 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 11.5 \\ & 14.5 \end{aligned}$	ns
		$\mathrm{V}_{\text {CC }}=5.0 \pm 0.5 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 4.9 \\ & 7.0 \end{aligned}$	$\begin{gathered} \hline 8.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} \hline 9.5 \\ 11.5 \end{gathered}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} \hline 9.5 \\ 11.5 \end{gathered}$	
$\mathrm{C}_{\text {IN }}$	Maximum Input Capacitance				6	10		10		10	pF

		Typical @ 25 ${ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}$	
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Note 1)	30	pF

1. $\mathrm{C}_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{C C(O P R)}=C_{P D} \bullet V_{C C} \bullet f_{i n}+I_{C C} . C_{P D}$ is used to determine the no-load dynamic power consumption; $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.

TIMING REQUIREMENTS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$)

Symbol	Parameter	Test Conditions	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=\leq 85^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=\leq 125^{\circ} \mathrm{C}$		Unit
			Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Reset or Enable (Figure 10)	$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$	5.0			5.5		5.5		ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V}$	5.0			5.5		5.5		
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Address or Data to Enable (Figure 10)	$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$	4.5			4.5		4.5		ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V}$	3.0			3.0		3.0		
t_{h}	Minimum Hold Time, Enable to Address or Data (Figure 8 or 9)	$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$	2.0			2.0		2.0		ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V}$	2.0			2.0		2.0		
$\mathrm{tr}_{\mathrm{r},} \mathrm{t}_{\mathrm{f}}$	Maximum Input, Rise and Fall Times (Figure 6)	$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$			400		300		300	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V}$			200		100		100	

Figure 6. Switching Waveform

Figure 8. Switching Waveform

Figure 10. Switching Waveform

*Includes all probe and jig capacitance
Figure 11. Test Circuit

MC74VHC259

PACKAGE DIMENSIONS

MC74VHC259

PACKAGE DIMENSIONS

TSSOP-16
CASE 948F
ISSUE B

ON Semiconductor and the (01N are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toil Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

