## Single Input High Voltage High and Low-Side MOSFET or IGBT Drivers

The NCP5104 is a High Voltage Power gate Driver providing two outputs for direct drive of 2 N -channel power MOSFETs or IGBTs arranged in a half-bridge configuration. It uses the bootstrap technique to insure a proper drive of the High-side power switch.

## Features

- High Voltage Range: up to 600 V
- dV/dt Immunity $\pm 50 \mathrm{~V} / \mathrm{nsec}$
- Gate Drive Supply Range from 10 V to 20 V
- High and Low Drive Outputs
- Output Source / Sink Current Capability $250 \mathrm{~mA} / 500 \mathrm{~mA}$
- 3.3 V and 5 V Input Logic Compatible
- Up to $V_{C C}$ Swing on Input Pins
- Extended Allowable Negative Bridge Pin Voltage Swing to -10 V for Signal Propagation
- Matched Propagation Delays between Both Channels
- 1 Input with Internal Fixed Dead Time (520 ns)
- Under $\mathrm{V}_{\mathrm{CC}}$ LockOut (UVLO) for Both Channels
- Pin to Pin Compatible with Industry Standards
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant


## Typical Applications

- Half-Bridge Power Converters


ON Semiconductor ${ }^{\circledR}$
www.onsemi.com


NCP5104 = Specific Device Code
A = Assembly Location
L or WL = Wafer Lot
Y or $\mathrm{YY}=$ Year
W or WW = Work Week
G or $\quad=$ Pb-Free Package

## PINOUT INFORMATION



ORDERING INFORMATION

| Device | Package | Shipping ${ }^{\dagger}$ |
| :---: | :---: | :---: |
| NCP5104PG | PDIP-8 <br> (Pb-Free) | 50 Units / Rail |
| NCP5104DR2G | SOIC-8 <br> (Pb-Free) | 2500 / Tape \& Reel |
| NCV5104DR2G | SOIC-8 <br> (Pb-Free) | 2500 / Tape \& Reel |

$\dagger$ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.


Figure 1. Typical Application Resonant Converter (LLC type)


Figure 2. Typical Application Half Bridge Converter


Figure 3. Detailed Block Diagram

PIN DESCRIPTION

| Pin Name |  |
| :--- | :--- |
| $V_{\text {CC }}$ | Low Side and Main Power Supply |
| IN | Logic Input |
| $\overline{\text { SD }}$ | Logic Input for Shutdown |
| GND | Ground |
| DRV_LO | Low Side Gate Drive Output |
| $V_{\text {BOOT }}$ | Bootstrap Power Supply |
| DRV_HI | High Side Gate Drive Output |
| BRIDGE | Bootstrap Return or High Side Floating Supply Return |

MAXIMUM RATINGS

| Rating | Symbol | Value | Unit |
| :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Main power supply voltage | -0.3 to 20 | V |
| $\mathrm{V}_{\text {CC_transient }}$ | Main transient power supply voltage: $\mathrm{IV}_{\text {CC_max }}=5 \mathrm{~mA}$ during 10 ms | 23 | V |
| $\mathrm{V}_{\text {BOOT }}$ | VHV: High Voltage BOOT Pin | -1 to 620 | V |
| $\mathrm{V}_{\text {Bridge }}$ | VHV: High Voltage BRIDGE pin | -1 to 600 | V |
| $V_{\text {BRIDGE }}$ | Allowable Negative Bridge Pin Voltage for IN_LO Signal Propagation to DRV_LO (see characterization curves for detailed results) | -10 | V |
| $\mathrm{V}_{\text {BOOT- }} \mathrm{V}_{\text {BRIDGE }}$ | VHV: Floating supply voltage | -0.3 to 20 | V |
| V ${ }_{\text {DRV_HI }}$ | VHV: High side output voltage | $\begin{gathered} \mathrm{V}_{\text {BRIDGE }}-0.3 \text { to } \\ \mathrm{V}_{\text {BOOT }}+0.3 \end{gathered}$ | V |
| V ${ }_{\text {DRV_LO }}$ | Low side output voltage | -0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$ | V |
| $\mathrm{dV}_{\text {BRIDGE }} / \mathrm{dt}$ | Allowable output slew rate | 50 | V/ns |
| $\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\text {SD }}$ | Inputs IN \& SD | -1.0 to $\mathrm{V}_{\mathrm{CC}}+0.3$ | V |
|  | ESD Capability: <br> - HBM model (all pins except pins 6-7-8 in 8) <br> - Machine model (all pins except pins 6-7-8) | $\begin{gathered} 2 \\ 200 \end{gathered}$ | $\begin{gathered} \mathrm{kV} \\ \mathrm{~V} \end{gathered}$ |
|  | Latch up capability per JEDEC JESD78 |  |  |
| $\mathrm{R}_{\text {өJA }}$ | Power dissipation and Thermal characteristics PDIP-8: Thermal Resistance, Junction-to-Air SO-8: Thermal Resistance, Junction-to-Air | $\begin{aligned} & 100 \\ & 178 \end{aligned}$ | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\mathrm{T}_{\text {ST }}$ | Storage Temperature Range | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {J_max }}$ | Maximum Operating Junction Temperature | +150 | ${ }^{\circ} \mathrm{C}$ |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ELECTRICAL CHARACTERISTIC $\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {boot }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=\mathrm{V}_{\text {bridge }},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<125^{\circ} \mathrm{C}\right.$, Outputs loaded with 1 nF$)$

| Rating | Symbol | TJ $40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |

## OUTPUT SECTION

| Output high short circuit pulsed current $\mathrm{V}_{\text {DRV }}=0 \mathrm{~V}, \mathrm{PW} \leq 10 \mu \mathrm{~s}$ (Note 1) | $\mathrm{I}_{\text {DRVsource }}$ | - | 250 | - | mA |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Output low short circuit pulsed current $\mathrm{V}_{\text {DRV }}=\mathrm{Vcc}, \mathrm{PW} \leq 10 \mu \mathrm{~s}$ (Note 1) | IDRVsink | - | 500 | - | mA |
| Output resistor (Typical value @ $25^{\circ} \mathrm{C}$ ) Source | $\mathrm{R}_{\mathrm{OH}}$ | - | 30 | 60 | $\Omega$ |
| Output resistor (Typical value @ 25 ${ }^{\circ} \mathrm{C}$ ) Sink | ROL | - | 10 | 20 | $\Omega$ |
| High level output voltage, $\mathrm{V}_{\text {BIAS }}-\mathrm{V}_{\text {DRV }} \mathrm{xx}$ @ $\mathrm{l}_{\text {DRV_ }} \mathrm{xx}=20 \mathrm{~mA}$ | $\mathrm{V}_{\text {DRV_H }}$ | - | 0.7 | 1.6 | V |
| Low level output voltage $\mathrm{V}_{\text {DRV_xx }}$ @ $\mathrm{I}_{\text {DRV_xx }}=20 \mathrm{~mA}$ | V DRV_L | - | 0.2 | 0.6 | V |

## DYNAMIC OUTPUT SECTION

| Turn-on propagation delay (Vbridge $=0 \mathrm{~V}$ ) (Note 2) | $\mathrm{t}_{\mathrm{ON}}$ | - | 620 | 800 | ns |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Turn-off propagation delay (Vbridge $=0 \mathrm{~V}$ or 50 V ) (Note 3) | $\mathrm{t}_{\mathrm{OFF}}$ | - | 100 | 170 | ns |
| Shutdown propagation delay, when Shutdown is enabled | $\mathrm{t}_{\text {sd_en }}$ | - | 100 | 170 | ns |
| Shutdown propagation delay, when Shutdown is disabled | $\mathrm{t}_{\text {sd_dis }}$ | - | 620 | 800 | ns |
| Output voltage rise time (from 10\% to $90 \% @ \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}$ ) with 1 nF load | $\mathrm{t}_{\mathrm{r}}$ | - | 85 | 160 | ns |
| Output voltage fall time (from 90\% to $10 \% @ \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}$ ) with 1 nF load | $\mathrm{t}_{\mathrm{f}}$ | - | 35 | 75 | ns |
| Propagation delay matching between the High side and the Low side <br> @ $25^{\circ} \mathrm{C}$ (Note 4) | $\Delta \mathrm{t}$ | - | 10 | 45 | ns |
| Internal fixed dead time (Note 5) | DT | 400 | 520 | 650 | ns |

INPUT SECTION

| Low level input voltage threshold | $\mathrm{V}_{\mathbb{I N}}$ | - | - | 0.8 | V |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Input pull-down resistor ( $\mathrm{V}_{\mathrm{IN}}<0.5 \mathrm{~V}$ ) | $\mathrm{R}_{\mathrm{IN}}$ | - | 200 | - | $\mathrm{k} \Omega$ |
| High level input voltage threshold | $\mathrm{V}_{\mathbb{I N}}$ | 2.3 | - | - | V |
| Logic "1" input bias current @ $\mathrm{V}_{\mathbb{I N}}=5 \mathrm{~V} @ 25^{\circ} \mathrm{C}$ | $\mathrm{I}_{\mathbb{N}+}$ | - | 5 | 25 | $\mu \mathrm{~A}$ |
| Logic " 0 " input bias current $@ \mathrm{~V}_{\mathbb{I N}}=0 \mathrm{~V} @ 25^{\circ} \mathrm{C}$ | $\mathrm{I}_{\mathbb{N}-}$ | - | - | 2.0 | $\mu \mathrm{~A}$ |

## SUPPLY SECTION

| Vcc UV Start-up voltage threshold | Vcc_stup | 8.0 | 8.9 | 9.8 | V |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Vcc UV Shut-down voltage threshold | Vcc_shtdwn | 7.3 | 8.2 | 9.0 | V |
| Hysteresis on Vcc | Vcc_hyst | 0.3 | 0.7 | - | V |
| Vboot Start-up voltage threshold reference to bridge pin <br> (Vboot_stup = Vboot - Vbridge) | Vboot_stup | 8.0 | 8.9 | 9.8 | V |
| Vboot UV Shut-down voltage threshold | Vboot_shtdwn | 7.3 | 8.2 | 9.0 | V |
| Hysteresis on Vboot | Vboot_shtdwn | 0.3 | 0.7 | - | V |
| Leakage current on high voltage pins to GND <br> (VBOOT $=V_{\text {BRIDGE }}=$ DRV_HI = 600 V) | IHV_LEAK | - | 5 | 40 | $\mu \mathrm{~A}$ |
| Consumption in active mode (Vcc = Vboot, fsw $=100 \mathrm{kHz}$ and 1 nF load on <br> both driver outputs) | ICC1 | - | 4 | 5 | mA |
| Consumption in inhibition mode (Vcc = Vboot) | ICC2 | - | 250 | 400 | $\mu \mathrm{~A}$ |
| Vcc current consumption in inhibition mode | ICC3 | - | 200 | - | $\mu \mathrm{A}$ |
| Vboot current consumption in inhibition mode | ICC4 | - | 50 | - | $\mu \mathrm{A}$ |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. Parameter guaranteed by design.
2. $T_{O N}=T_{O F F}+D T$
3. Turn-off propagation delay $@$ Vbridge $=600 \mathrm{~V}$ is guaranteed by design.
4. See characterization curve for $\Delta t$ parameters variation on the full range temperature.
5. Timing diagram definition see: Figure 4, Figure 5 and Figure 6.


Figure 4. Input/Output Timing Diagram
Note: DRV_HI output is in phase with the input


Figure 5. Timing Definitions


Figure 6. Matching Propagation Delay Definition


Figure 7. Shutdown Waveform Definition

## CHARACTERIZATION CURVES



Figure 8. Turn ON Propagation Delay vs.
Supply Voltage ( $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {BOOT }}$ )


Figure 10. Turn OFF Propagation Delay vs. Supply Voltage ( $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{BOOT}}$ )


Figure 12. High Side Turn ON Propagation Delay vs. $\mathrm{V}_{\text {BRIDGE }}$ Voltage ( $\left.\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{BOOT}}\right)$


Figure 9. Turn ON Propagation Delay vs. Temperature


Figure 11. Turn OFF Propagation Delay vs. Temperature


Figure 13. High Side Turn OFF Propagation Delay vs. $\mathrm{V}_{\text {BRIDGE }}$ Voltage ( $\left.\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{BOOT}}\right)$

## CHARACTERIZATION CURVES



Figure 14. Turn ON Risetime vs. Supply Voltage ( $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{BOOT}}$ )


Figure 16. Turn OFF Falltime vs. Supply Voltage ( $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{BOOT}}$ )


Figure 18. Propagation Delay Matching Between High Side and Low Side Driver vs. Temperature


Figure 15. Turn ON Risetime vs. Temperature


Figure 17. Turn OFF Falltime vs. Temperature


Figure 19. Dead Time vs. Temperature

## CHARACTERIZATION CURVES



Figure 20. Low Level Input Voltage Threshold vs. Supply Voltage ( $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{BOOT}}$ )


Figure 22. High Level Input Voltage Threshold vs. Supply Voltage ( $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{BOOT}}$ )


Figure 24. Logic " 0 " Input Current vs. Supply Voltage ( $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{BOOT}}$ )


Figure 21. Low Level Input Voltage Threshold
vs. Temperature


Figure 23. High Level Input Voltage Threshold vs. Temperature


Figure 25. Logic "0" Input Current vs. Temperature

## CHARACTERIZATION CURVES



Figure 26. Logic "1" Input Current vs. Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {BOот }}\right)$


Figure 28. Low Level Output Voltage vs. Supply Voltage ( $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{BOOT}}$ )


Figure 30. High Level Output Voltage vs. Supply Voltage ( $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {BOOT }}$ )


Figure 27. Logic "1" Input Current vs. Temperature


Figure 29. Low Level Output Voltage vs. Temperature


Figure 31. High Level Output Voltage vs. Temperature

## CHARACTERIZATION CURVES



Figure 32. Output Source Current vs. Supply Voltage ( $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{BOOT}}$ )


Figure 34. Output Sink Current vs. Supply Voltage ( $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{BOOT}}$ )


Figure 36. Leakage Current on High Voltage Pins ( 600 V ) to Ground vs. V ${ }^{\text {bridge }}$ Voltage $\left(\mathrm{V}_{\text {BRIDGE }}=\mathrm{V}_{\text {BOOT }}=\mathrm{V}_{\text {DRV_HI }}\right)$


Figure 33. Output Source Current vs. Temperature


Figure 35. Output Sink Current vs. Temperature


Figure 37. Leakage Current on High Voltage Pins ( 600 V ) to Ground vs. Temperature $\left(\mathrm{V}_{\text {BRIDGE }}=\mathrm{V}_{\text {BOOT }}=\mathrm{V}_{\text {DRv_HI }}=600 \mathrm{~V}\right)$

## CHARACTERIZATION CURVES



Figure 38. $\mathrm{V}_{\text {BOOT }}$ Supply Current vs. Bootstrap Supply Voltage ( $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{BOOT}}$ )


Figure 40. $\mathrm{V}_{\mathrm{Cc}}$ Supply Current vs. $\mathrm{V}_{\mathrm{CC}}$ Supply Voltage ( $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {BOот }}$ )


Figure 42. UVLO Startup Voltage vs. Temperature


Figure 39. $\mathrm{V}_{\text {Bоот }}$ Supply Current vs. Temperature


Figure 41. V ${ }_{\text {CC }}$ Supply Current vs. Temperature


Figure 43. UVLO Shutdown Voltage vs. Temperature

## CHARACTERIZATION CURVES



Figure 44. Icc1 Consumption vs. Switching Frequency with 15 nC Load on Each Driver @ $V_{C C}=15 \mathrm{~V}$


Figure 46. ICC1 Consumption vs. Switching Frequency with 50 nC Load on Each Driver @ $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$

Figure 45. ICC1 Consumption vs. Switching Frequency with 33 nC Load on Each Driver @ $V_{C C}=15 \mathrm{~V}$


Figure 47. Icc1 Consumption vs. Switching Frequency with 100 nC Load on Each Driver @ $V_{C C}=15 \mathrm{~V}$


Figure 48. NCP5104, Negative Voltage Safe Operating Area on the Bridge Pin


SCALE 1:1


$$
\begin{aligned}
& \text { STYLE 1: } \\
& \text { PIN 1. AC IN } \\
& \text { 2. DC }+ \text { IN } \\
& \text { 3. DC }- \text { IN } \\
& \text { 4. AC IN } \\
& \text { 5. GROUND } \\
& \text { 6. OUTPUT } \\
& \text { 7. AUXILIARY } \\
& \text { 8. VCC }
\end{aligned}
$$

| DOCUMENT NUMBER: | 98ASB42420B | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | PDIP-8 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.


SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
. CONTROLLING DIMENSION: MILLIMETER.
2. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
3. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
4. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
5. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

| DIM | MILLIMETERS |  | INCHES |  |
| :---: | :---: | :---: | :---: | :---: |
|  | MIN | MAX | MIN | MAX |
|  | 4.80 | 5.00 | 0.189 | 0.197 |
| B | 3.80 | 4.00 | 0.150 | 0.157 |
| C | 1.35 | 1.75 | 0.053 | 0.069 |
| D | 0.33 | 0.51 | 0.013 | 0.020 |
| G | 1.27 BSC |  | 0.050 BSC |  |
| H | 0.10 | 0.25 | 0.004 | 0.010 |
| J | 0.19 | 0.25 | 0.007 | 0.010 |
| K | 0.40 | 1.27 | 0.016 | 0.050 |
| M | 0 | $0^{\circ}$ | $8^{\circ}$ | 0 |
|  | $\circ$ | 8 |  |  |
| N | 0.25 | 0.50 | 0.010 | 0.020 |
| S | 5.80 | 6.20 | 0.228 | 0.244 |

GENERIC
MARKING DIAGRAM*



XXXXX = Specific Device Code
A = Assembly Location
L Wafer Lot
= Year
= Work Week
= Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

## STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^0] special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

| PIN 1. | EMITTER |
| ---: | :--- |
| 2. | COLLECTOR |
| 3. | COLLECTOR |
| 4. | EMITTER |
| 5. | EMITTER |
| 6. | BASE |
| 7. | BASE |
| 8. | EMITTER |
| STYLE 5: |  |
| PIN 1. | DRAIN |
| 2. | DRAIN |
| 3. | DRAIN |
| 4. | DRAIN |
| 5. | GATE |
| 6. | GATE |
| 7. | SOURCE |
| 8. | SOURCE |

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10UT
V10UT
TXE
RXE
VEE
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. $N / C$

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

## STYLE 29:

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
7. COLLECTOR, \#1

STYLE
PIN 1. COLIECTOR, DIE,
2. COLLECTOR, \#1
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT

GROUND
GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14:
PIN 1. N-SOURCE
2. N-GATE

P-SOURCE
P-GATE
5-DRAIN
. P-DRAIN
7. N -DRAIN
8. N-DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
4. ILIMIT
5. SOURCE

SOURCE
7. SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE
N 1. DRAIN, DIE
2. DRAIN, \#1
3. DRAIN, \#2
4. DRAIN, \#2
5. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

## STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

## STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN
8. DRAIN 1

## STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

## STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

## STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

## STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

## STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

## STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

## STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

## STYLE 24:

PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

## STYLE 28:

PIN 1. SW_TO_GND
2. DASIC $\bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBUULK
7. VBULK
8. VIN

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| :---: | :---: | :---: |
| DESCRIPTION: | SOIC-8 NB | - PAGE 2 OF2 |

onsemi and OnSeMi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

## PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com


[^0]:    onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

