

# **STF11N65M2, STFI11N65M2**

# N-channel 650 V, 0.6 Ω typ., 7 A MDmesh™ M2 Power MOSFETs in TO-220FP and I²PAKFP packages

Datasheet - production data

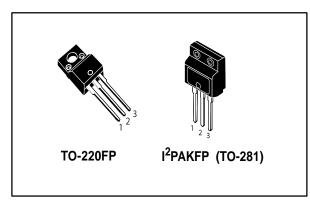
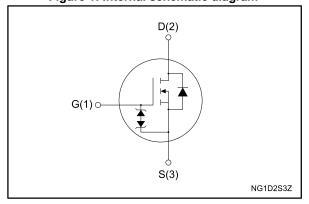




Figure 1: Internal schematic diagram



### **Features**

| Order code  | V <sub>DS</sub> | R <sub>DS(on)</sub> max. | ΙD  | Ртот  |
|-------------|-----------------|--------------------------|-----|-------|
| STF11N65M2  | 650 V           | 0.69.0                   | 7.0 | 25 W  |
| STFI11N65M2 | 050 V           | 0.68 Ω                   | 7 A | ∠5 VV |

- Extremely low gate charge
- Excellent output capacitance (Coss) profile
- 100% avalanche tested
- Zener-protected

### **Applications**

Switching applications

### **Description**

These devices are N-channel Power MOSFETs developed using MDmesh™ M2 technology. Thanks to their strip layout and improved vertical structure, these devices exhibit low on-resistance and optimized switching characteristics, rendering them suitable for the most demanding high efficiency converters.

**Table 1: Device summary** 

| Order code  | Marking  | Package  | Packing |
|-------------|----------|----------|---------|
| STF11N65M2  | 44 NCTMO | TO-220FP | Tuba    |
| STFI11N65M2 | 11N65M2  | I²PAKFP  | Tube    |

September 2015 DocID025806 Rev 2 1/15

### **Contents**

| 1 | Electric | cal ratings                                       | 3  |
|---|----------|---------------------------------------------------|----|
| 2 | Electric | cal characteristics                               | 4  |
|   | 2.1      | Electrical characteristics (curves)               | 6  |
| 3 | Test cir | rcuits                                            | 8  |
| 4 | Packag   | e information                                     | 9  |
|   | 4.1      | TO-220FP package information                      | 10 |
|   | 4.2      | I <sup>2</sup> PAKFP (TO-281) package information | 12 |
| 5 | Revisio  | on history                                        | 14 |



### 1 Electrical ratings

Table 2: Absolute maximum ratings

| Symbol                         | Parameter                                                                                              | Value      | Unit  |
|--------------------------------|--------------------------------------------------------------------------------------------------------|------------|-------|
| V <sub>G</sub> s               | Gate-source voltage                                                                                    | ±25        | V     |
| Ip <sup>(1)</sup>              | Drain current (continuous) at T <sub>case</sub> = 25 °C                                                |            | Α     |
| ID <sup>(*)</sup>              | Drain current (continuous) at T <sub>case</sub> = 100 °C                                               | 4.4        | A     |
| I <sub>DM</sub> <sup>(2)</sup> | Drain current (pulsed)                                                                                 | 28         | Α     |
| Ртот                           | Total dissipation at T <sub>case</sub> = 25 °C                                                         | 25         | W     |
| dv/dt <sup>(3)(4)</sup>        | Peak diode recovery voltage slope                                                                      | 15         | V/ns  |
| dv/dt <sup>(5)</sup>           | MOSFET dv/dt ruggedness                                                                                | 50         | V/IIS |
| V <sub>ISO</sub>               | Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s, $T_C$ = 25 °C) | 2500       | V     |
| T <sub>stg</sub>               | T <sub>stg</sub> Storage temperature                                                                   |            | °C    |
| Tj                             | Operating junction temperature                                                                         | -55 to 150 |       |

#### Notes:

Table 3: Thermal data

| Symbol                | Parameter                        | Value | Unit  |
|-----------------------|----------------------------------|-------|-------|
| R <sub>thj-case</sub> | Thermal resistance junction-case | 5     | 90044 |
| R <sub>thj-amb</sub>  |                                  |       | °C/W  |

**Table 4: Avalanche characteristics** 

| Symbol                         | Parameter                                       | Value | Unit |
|--------------------------------|-------------------------------------------------|-------|------|
| I <sub>AR</sub> <sup>(1)</sup> | Avalanche current, repetitive or not repetitive | 1.5   | Α    |
| E <sub>AS</sub> <sup>(2)</sup> | Single pulse avalanche energy                   | 110   | mJ   |

#### Notes:

 $<sup>^{\</sup>left(1\right)}$  The value is rated according to  $R_{thj\text{-}case}$  and limited by package.

 $<sup>^{(2)}</sup>$  Pulse width limited by  $T_{jmax}$ .

 $<sup>^{(3)}</sup>$  starting  $T_j$  = 25 °C,  $I_D$  =  $I_{AS},\,V_{DD}$  = 50 V.

 $<sup>^{(4)}</sup>$  IsD  $\leq 7$  A, di/dt=400 A/µs, VDs peak < V(BR)DSS VDD = 80% V(BR)DSS.

 $<sup>^{(5)}</sup>$  V<sub>DS</sub>  $\leq$  520 V.

 $<sup>^{(1)}</sup>$  Pulse width limited by  $T_{jmax}$ .

 $<sup>^{(2)}</sup>$  starting  $T_j = 25$  °C,  $I_D = I_{AR}$ ,  $V_{DD} = 50$  V.

### 2 Electrical characteristics

(T<sub>case</sub> = 25 °C unless otherwise specified)

Table 5: Static

| Symbol                                            | Parameter                             | Test conditions                                                               | Min. | Тур. | Max. | Unit |
|---------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------|------|------|------|------|
| V <sub>(BR)DSS</sub>                              | Drain-source breakdown voltage        | $V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$                                    | 650  |      |      | V    |
|                                                   | Zoro goto voltago droin               | $V_{GS} = 0 \text{ V}, V_{DS} = 650 \text{ V}$                                |      |      | 1    |      |
| l <sub>DSS</sub> Zero gate voltage dra<br>current |                                       | V <sub>GS</sub> = 0 V, V <sub>DS</sub> = 650 V,<br>T <sub>case</sub> = 125 °C |      |      | 100  | μΑ   |
| Igss                                              | Gate-body leakage current             | V <sub>DS</sub> = 0 V, V <sub>GS</sub> = ±25 V                                |      |      | ±10  | μΑ   |
| V <sub>GS(th)</sub>                               | Gate threshold voltage                | $V_{DS} = V_{GS}$ , $I_D = 250 \mu A$                                         | 2    | 3    | 4    | V    |
| R <sub>DS(on)</sub>                               | Static drain-source on-<br>resistance | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 3.5 A                                |      | 0.6  | 0.68 | Ω    |

Table 6: Dynamic

| Symbol           | Parameter                     | Test conditions                                                         | Min. | Тур. | Max. | Unit |
|------------------|-------------------------------|-------------------------------------------------------------------------|------|------|------|------|
| C <sub>iss</sub> | Input capacitance             |                                                                         | ı    | 410  | ı    |      |
| Coss             | Output capacitance            | $V_{DS} = 100 \text{ V}, f = 1 \text{ MHz},$                            | ı    | 20   | ı    | pF   |
| Crss             | Reverse transfer capacitance  | V <sub>GS</sub> = 0 V                                                   | -    | 0.95 | -    | ρ.   |
| Coss eq. (1)     | Equivalent output capacitance | $V_{DS} = 0$ to 520 V, $V_{GS} = 0$ V                                   | -    | 83   | -    | pF   |
| R <sub>G</sub>   | Intrinsic gate resistance     | f = 1 MHz, I <sub>D</sub> = 0 A                                         | -    | 6.4  | -    | Ω    |
| Qg               | Total gate charge             | $V_{DD} = 520 \text{ V}, I_D = 7 \text{ A},$                            | ı    | 12.5 | ı    |      |
| Q <sub>gs</sub>  | Gate-source charge            | V <sub>GS</sub> = 10 V (see Figure 15:<br>"Test circuit for gate charge |      | 3.2  | -    | nC   |
| $Q_{gd}$         | Gate-drain charge             | behavior")                                                              | -    | 5.8  | -    |      |

#### Notes:

**Table 7: Switching times** 

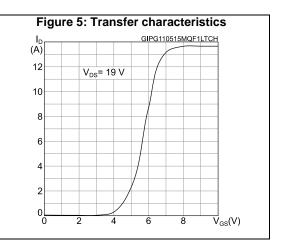
| Symbol              | Parameter           | Test conditions                                                        | Min. | Тур. | Max. | Unit |
|---------------------|---------------------|------------------------------------------------------------------------|------|------|------|------|
| t <sub>d(on)</sub>  | Turn-on delay time  | $V_{DD} = 325 \text{ V}, I_D = 3.5 \text{ A}$                          | ı    | 9.5  | ı    |      |
| tr                  | Rise time           | $R_G = 4.7 \Omega$ , $V_{GS} = 10 V$ (see Figure 14: "Test circuit for | ı    | 7.5  | ı    |      |
| t <sub>d(off)</sub> | Turn-off delay time | resistive load switching times"                                        | 1    | 26   | -    | ns   |
| tf                  | Fall time           | and Figure 19: "Switching time waveform")                              |      | 15   | 1    |      |

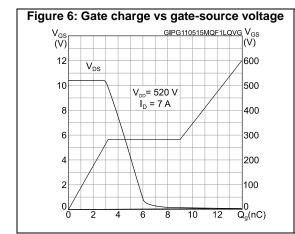
577

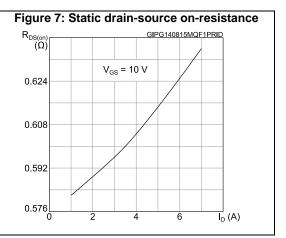
 $<sup>^{(1)}</sup>$  Coss eq. is defined as a constant equivalent capacitance giving the same charging time as Coss when VDs increases from 0 to 80% VDss.

Table 8: Source-drain diode

| Symbol                          | Parameter                     | Test conditions                                                            | Min. | Тур. | Max. | Unit |
|---------------------------------|-------------------------------|----------------------------------------------------------------------------|------|------|------|------|
| I <sub>SD</sub>                 | Source-drain current          |                                                                            | ı    |      | 7    | Α    |
| I <sub>SDM</sub> <sup>(1)</sup> | Source-drain current (pulsed) |                                                                            | 1    |      | 28   | Α    |
| V <sub>SD</sub> <sup>(2)</sup>  | Forward on voltage            | V <sub>GS</sub> = 0 V, I <sub>SD</sub> = 7 A                               | ı    |      | 1.6  | V    |
| t <sub>rr</sub>                 | Reverse recovery time         | $I_{SD} = 7 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$         | ı    | 318  |      | ns   |
| Qrr                             | Reverse recovery charge       | V <sub>DD</sub> = 60 V (see Figure 16:<br>"Test circuit for inductive load | -    | 2.5  |      | μC   |
| I <sub>RRM</sub>                | Reverse recovery current      | switching and diode recovery times")                                       | 1    | 15.5 |      | А    |
| t <sub>rr</sub>                 | Reverse recovery time         | $I_{SD} = 7 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$         | -    | 437  |      | ns   |
| Qrr                             | Reverse recovery charge       | $V_{DD}$ = 60 V, $T_j$ = 150 °C (see Figure 16: "Test circuit for          | -    | 3.2  |      | μC   |
| I <sub>RRM</sub>                | Reverse recovery current      | inductive load switching and diode recovery times")                        | -    | 15   |      | Α    |

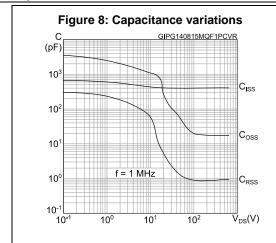

#### Notes:

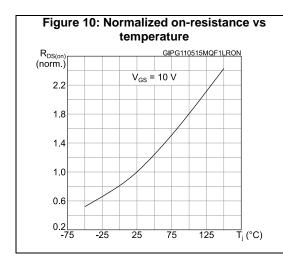

 $<sup>^{(1)}</sup>$  Pulse width is limited by safe operating area.


 $<sup>^{(2)}</sup>$  Pulse test: pulse duration = 300  $\mu s,$  duty cycle 1.5%.

# 2.1 Electrical characteristics (curves)

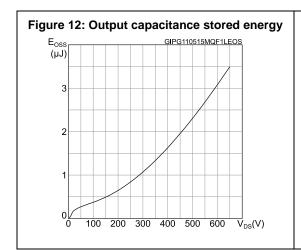
Figure 2: Safe operating area GIPG080915MQF1045YFSOA I<sub>D</sub> (A) Operation in this area is limited by R DS(on) 10<sup>1</sup> 10 µs 100 µs 10<sup>0</sup> 1 ms 10 ms 10 T <sub>j</sub>≤ 150 °C T <sub>c</sub>= 25 °C 10<sup>-2</sup> single pulse  $\overline{V}_{DS}(V)$ 10° 10<sup>1</sup> 10<sup>2</sup>

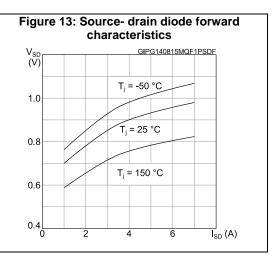







DocID025806 Rev 2


6/15











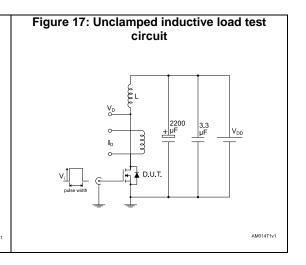
### 3 Test circuits

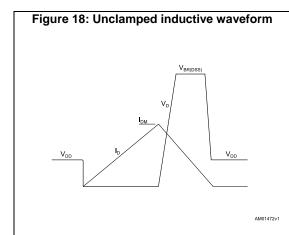
Figure 14: Test circuit for resistive load switching times

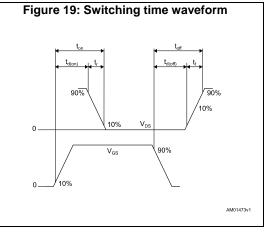
Figure 15: Test circuit for resistive load switching times

Figure 15: Test circuit for resistive load switching times

AM01468v1


Figure 15: Test circuit for gate charge behavior


12 V 47 kΩ 100 nF D.U.T.


2200 PF 47 kΩ OVG

AM01466y1

Figure 16: Test circuit for inductive load switching and diode recovery times

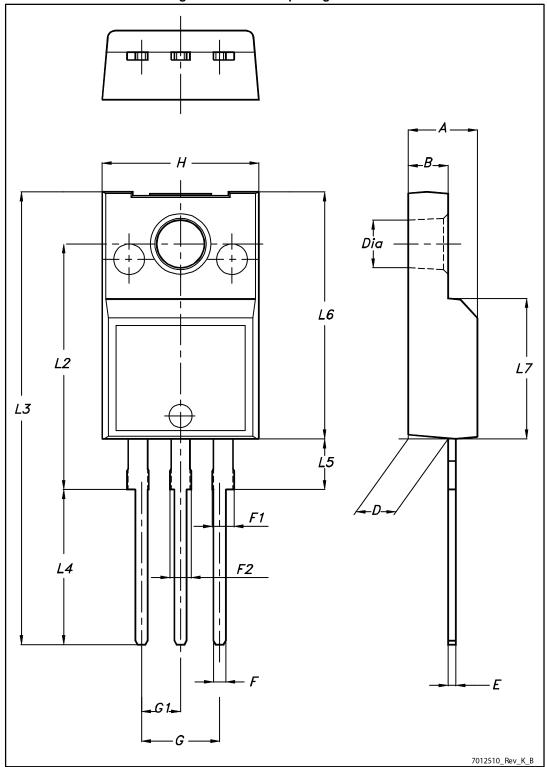






4

8/15 DocID025806 Rev 2


# 4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.



# 4.1 TO-220FP package information

Figure 20: TO-220FP package outline



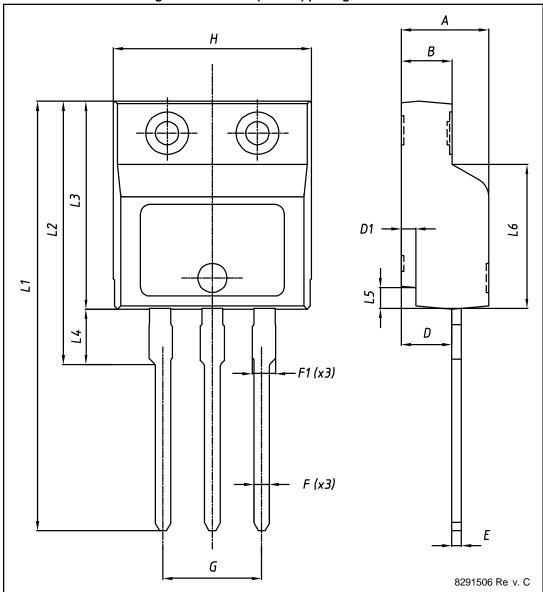

577

Table 9: TO-220FP package mechanical data

| Table 9: 10-220FP package mechanical data |      |      |      |  |
|-------------------------------------------|------|------|------|--|
| Dim.                                      |      | mm   |      |  |
| Dim.                                      | Min. | Тур. | Max. |  |
| Α                                         | 4.4  |      | 4.6  |  |
| В                                         | 2.5  |      | 2.7  |  |
| D                                         | 2.5  |      | 2.75 |  |
| Е                                         | 0.45 |      | 0.7  |  |
| F                                         | 0.75 |      | 1    |  |
| F1                                        | 1.15 |      | 1.70 |  |
| F2                                        | 1.15 |      | 1.70 |  |
| G                                         | 4.95 |      | 5.2  |  |
| G1                                        | 2.4  |      | 2.7  |  |
| Н                                         | 10   |      | 10.4 |  |
| L2                                        |      | 16   |      |  |
| L3                                        | 28.6 |      | 30.6 |  |
| L4                                        | 9.8  |      | 10.6 |  |
| L5                                        | 2.9  |      | 3.6  |  |
| L6                                        | 15.9 |      | 16.4 |  |
| L7                                        | 9    |      | 9.3  |  |
| Dia                                       | 3    |      | 3.2  |  |

# 4.2 I<sup>2</sup>PAKFP (TO-281) package information

Figure 21: I<sup>2</sup>PAKFP (TO-281) package outline



47/

Table 10: I<sup>2</sup>PAKFP (TO-281) mechanical data

| Dim  | (1)   | mm   |       |
|------|-------|------|-------|
| Dim. | Min.  | Тур. | Max.  |
| Α    | 4.40  | -    | 4.60  |
| В    | 2.50  |      | 2.70  |
| D    | 2.50  |      | 2.75  |
| D1   | 0.65  |      | 0.85  |
| E    | 0.45  |      | 0.70  |
| F    | 0.75  |      | 1.00  |
| F1   |       |      | 1.20  |
| G    | 4.95  |      | 5.20  |
| Н    | 10.00 |      | 10.40 |
| L1   | 21.00 |      | 23.00 |
| L2   | 13.20 |      | 14.10 |
| L3   | 10.55 |      | 10.85 |
| L4   | 2.70  |      | 3.20  |
| L5   | 0.85  |      | 1.25  |
| L6   | 7.50  | 7.60 | 7.70  |

# 5 Revision history

**Table 11: Document revision history** 

| Date        | Revision | Changes                                                                                                                                                                                                                                                                                                                       |
|-------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 09-May-2014 | 1        | First release.                                                                                                                                                                                                                                                                                                                |
| 08-Sep-2015 | 2        | Text and formatting changes throughout document. On cover page: - updated Title and Features In section Electrical characteristics: - updated and renamed table Static (was On /off states) Updated section Electrical characteristics (curves) Updated and renamed section Package information (was Package mechanical data) |



#### **IMPORTANT NOTICE - PLEASE READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

