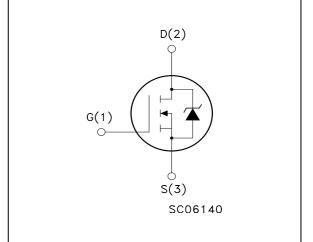


Table 1: General Features

Туре	v_{DSS}	R _{DS(on)}	ID	Pw
STB200NF04 STB200NF04-1 STP200NF04	40 V 40 V 40 V	< 0.0037 Ω < 0.0037 Ω < 0.0037 Ω	-	310 W

- STANDARD THRESHOLD DRIVE
- 100% AVALANCHE TESTED

DESCRIPTION


This MOSFET is the latest development of STMicroelectronics unique "Single Feature Size™" strip-based process. The resulting transistor shows extremely high packing density for low onresistance, rugged avalance characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility.

APPLICATIONS

- HIGH CURRENT, HIGH SWITCHING SPEED
- AUTOMOTIVE

Figure 1: Package

Figure 2: Internal Schematic Diagram

Table 2: Order Codes

SALES TYPE	MARKING	PACKAGE	PACKAGING
STB200NF04T4	B200NF04	D ² PAK	TAPE & REEL
STB200NF04-1	B200NF04	I ² PAK	TUBE
STP200NF04	P200NF04	TO-220	TUBE

1/15

STP200NF04 - STB200NF04 - STB200NF04-1

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	40	V
V _{DGR}	Drain-gate Voltage (R_{GS} = 20 k Ω)	40	V
V _{GS}	Gate- source Voltage	± 20	V
I _D (#)	Drain Current (continuos) at T _C = 25°C	120	A
I _D (#)	Drain Current (continuos) at T _C = 100°C	120	A
$I_{DM}(\bullet)$	Drain Current (pulsed)	480	A
Ртот	Total Dissipation at $T_C = 25^{\circ}C$	310	W
	Derating Factor	2.07	W/°C
dv/dt (1)	Peak Diode Recovery voltage slope	1.5	V/ns
E _{AS} (2)	Single Pulse Avalanche Energy	1.3	J
T _j T _{stg}	Operating Junction Temperature Storage Temperature	-55 to 175	°C

Table 3: Absolute Maximum ratings

(•) Pulse width limited by safe operating area (1) $I_{SD} \le 120A$, $di/dt \le 500A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_j \le T_{JMAX}$. (2) Starting $T_j = 25^{\circ}C$, $I_d = 60A$, $V_{DD}=30$ V (#) Current Limited by Package

Table 4: Thermal Data

		TO-220 / I ² PAK / D ² PAK	
Rthj-case	Thermal Resistance Junction-case Max	0.48	°C/W
Rthj-pcb	Thermal Resistance Junction-pcb Max	(see Figure 17)	°C/W
Rthj-amb	Thermal Resistance Junction-ambient (Free air) Max	62.5	°C/W
ΤI	Maximum Lead Temperature For Soldering Purpose	300	°C

ELECTRICAL CHARACTERISTICS (T_{CASE} =25°C UNLESS OTHERWISE SPECIFIED) Table 5: On/Off

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0$	40			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V _{DS} = Max Rating V _{DS} = Max Rating, T _C = 125 °C			1 10	μΑ μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	$V_{GS} = \pm 20V$			±100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2		4	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10V, I _D = 90 A		3.3	3.7	mΩ

57.

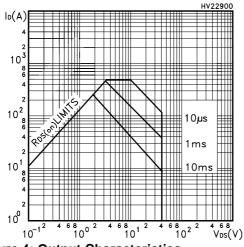
ELECTRICAL CHARACTERISTICS (CONTINUED)

Table 6: Dynamic

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	V _{DS} = 15 V, I _D = 90 A		150		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25V, f = 1 MHz, V _{GS} = 0		5100 1600 600		pF pF pF

Table 7: Switching On/Off

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r t _{d(off)} t _f	Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time	$\label{eq:VD} \begin{array}{l} V_{DD} = 20 \ V, \ I_D = 90 \ A \\ R_G = 4.7 \Omega \ V_{GS} = 10 \ V \\ (see \ Figure \ 20) \end{array}$		30 320 140 120		ns ns ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 20V, I_D = 120 \text{ A}, \\ V_{GS} = 10V \\ (see Figure 23)$		170 30 62	210	nC nC nC


Table 8: Source Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (2)	Source-drain Current Source-drain Current (pulsed)				120 480	A A
V _{SD} (1)	Forward On Voltage	I _{SD} = 120 A, V _{GS} = 0			1.3	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I_{SD} = 120 A, di/dt = 100A/µs V _{DD} = 30V, T _j = 150°C (see Figure 21)		85 190 4.5		ns nC A

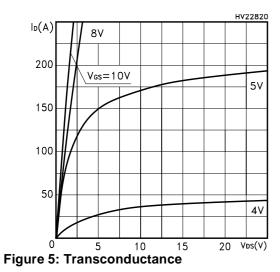

Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %.
Pulse width limited by safe operating area.

Figure 3: Safe Operating Area

Figure 4: Output Characteristics

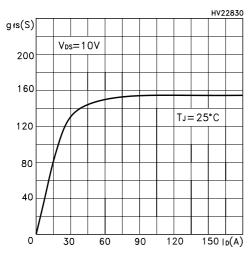


Figure 6: Thermal Impedance

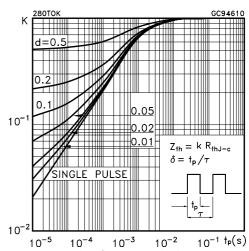
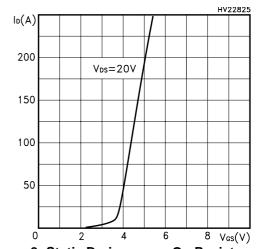
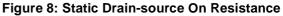




Figure 7: Transfer Characteristics

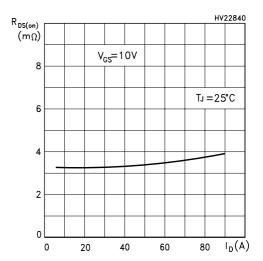


Figure 9: Gate Charge vs Gate-source Voltage

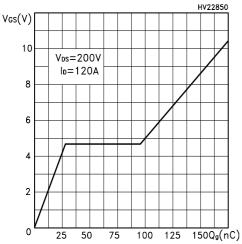


Figure 10: Normalized Gate Thereshold Voltage vs Temperature

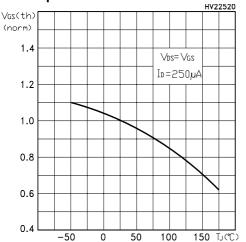
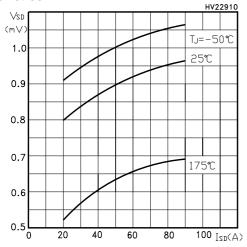



Figure 11: Dource-Drain Diode Forward Characteristics

Figure 12: Capacitance Variations

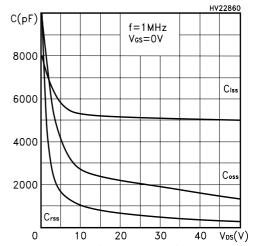


Figure 13: Normalized On Resistance vs Temperature

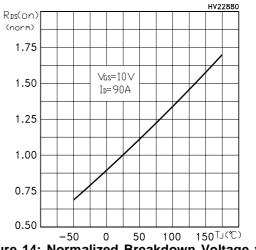


Figure 14: Normalized Breakdown Voltage vs Temperature

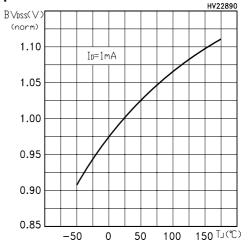


Figure 15: Thermal Resistance Rthj-a vs PCB Copper Area

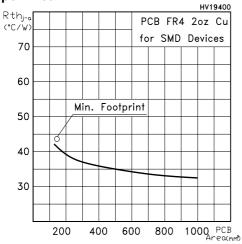


Figure 16: Max Power Dissipation vs PCB Copper Area

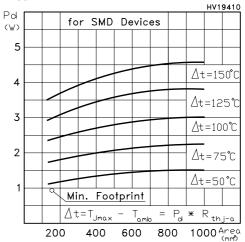
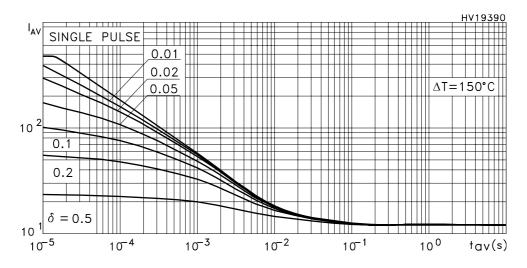



Figure 17: Allowable lav vs. Time in Avalanche

The previous curve gives the safe operating area for unclamped inductive loads, single pulse or repetitive, under the following conditions:

$$\begin{split} & \mathsf{P}_{\mathsf{D}(\mathsf{A}\mathsf{V}\mathsf{E})} = 0.5 \,^* \, (1.3 \,^* \mathsf{B}\mathsf{V}_{\mathsf{D}\mathsf{S}\mathsf{S}} \,^* \, \mathsf{I}_{\mathsf{A}\mathsf{V}}) \\ & \mathsf{E}_{\mathsf{A}\mathsf{S}(\mathsf{A}\mathsf{R})} = \mathsf{P}_{\mathsf{D}(\mathsf{A}\mathsf{V}\mathsf{E})} \,^* \, \mathsf{t}_{\mathsf{A}\mathsf{V}} \end{split}$$

Where:

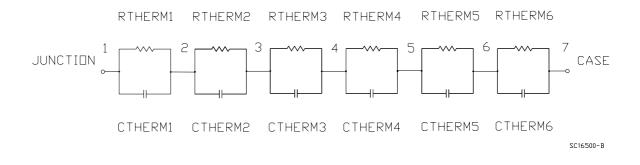
Where:

 I_{AV} is the Allowable Current in Avalanche $P_{D(AVE)}$ is the Average Power Dissipation in Avalanche (Single Pulse) t_{AV} is the Time in Avalanche

To derate above 25 °C, at fixed I_{AV}, the following equation must be applied:

 $I_{AV} = 2 * (T_{jmax} - T_{CASE}) / (1.3 * BV_{DSS} * Z_{th})$

 $Z_{th} = K * R_{th}$ is the value coming from Normalized Thermal Response at fixed pulse width equal to T_{AV} .



SPICE THERMAL MODEL

Table 9: 6th Order RC Network

Parameter	Node	Value
CTHERM1	1 - 2	1.4958E-3
CTHERM2	2 - 3	3.5074E-2
CTHERM3	3 - 4	5.939E-2
CTHERM4	4 - 5	9.7411E-2
CTHERM5	5 - 6	8.8596E-2
CTHERM6	6 - 7	8.2755E-1
RTHERM1	1 - 2	0.0384
RTHERM2	2 - 3	0.0624
RTHERM3	3 - 4	0.072
RTHERM4	4 - 5	0.0912
RTHERM5	5 - 6	0.1008
RTHERM6	6 - 7	0.1152

Figure 18: Schematic of 6th Order RC Network

Figure 19: Unclamped Inductive Load Test Circuit

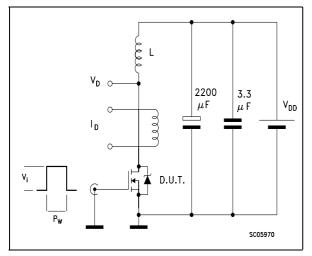


Figure 20: Switching Times Test Circuit For Resistive Load

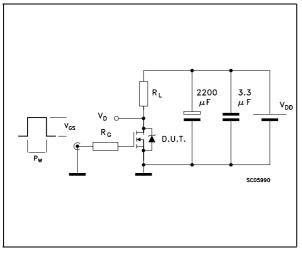
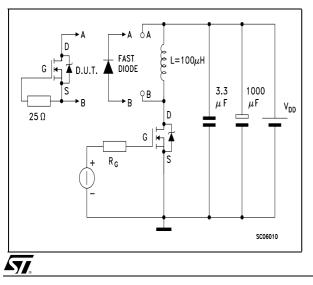



Figure 21: Test Circuit For Inductive Load Switching and Diode Recovery Times

Figure 22: Unclamped Inductive Wafeform

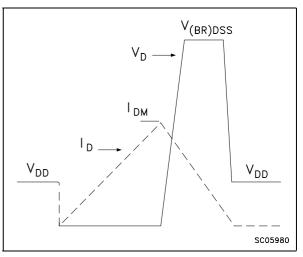
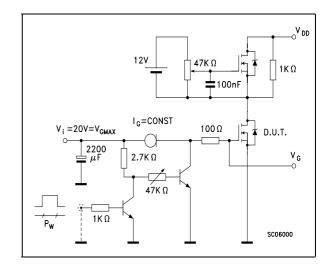
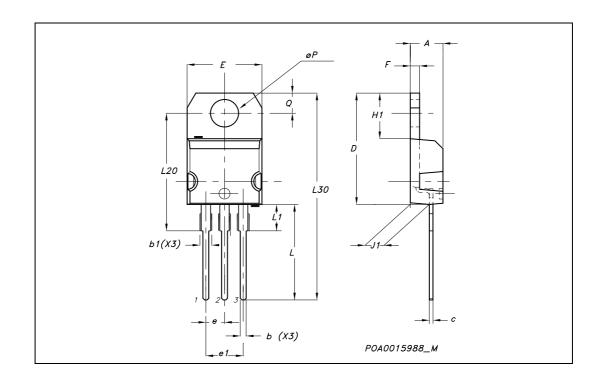
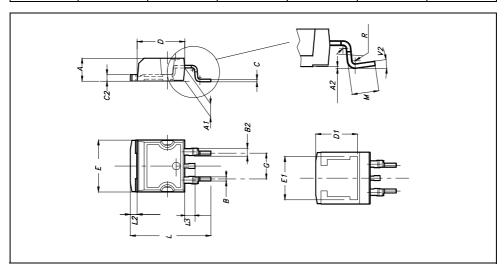
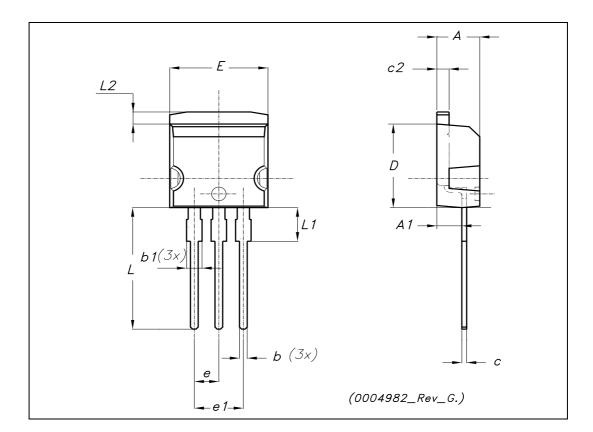




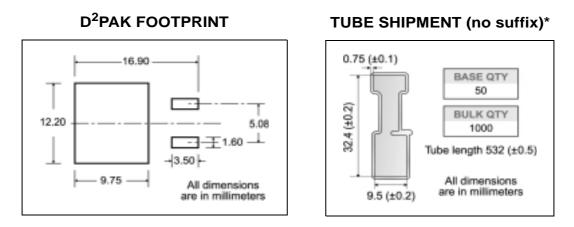
Figure 23: Gate Charge Test Circuit

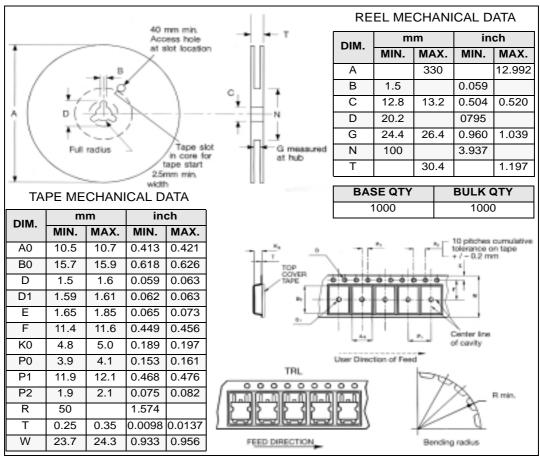
DIM.		mm.			inch	
	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.15		1.70	0.045		0.066
С	0.49		0.70	0.019		0.027
D	15.25		15.75	0.60		0.620
Е	10		10.40	0.393		0.409
е	2.40		2.70	0.094		0.106
e1	4.95		5.15	0.194		0.202
F	1.23		1.32	0.048		0.052
H1	6.20		6.60	0.244		0.256
J1	2.40		2.72	0.094		0.107
L	13		14	0.511		0.551
L1	3.50		3.93	0.137		0.154
L20		16.40			0.645	
L30		28.90			1.137	
øP	3.75		3.85	0.147		0.151
Q	2.65		2.95	0.104		0.116



10/15


DIM.		mm.			inch	
DIN.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	4.4		4.6	0.173		0.181
A1	2.49		2.69	0.098		0.106
A2	0.03		0.23	0.001		0.009
В	0.7		0.93	0.027		0.036
B2	1.14		1.7	0.044		0.067
С	0.45		0.6	0.017		0.023
C2	1.23		1.36	0.048		0.053
D	8.95		9.35	0.352		0.368
D1		8			0.315	
E	10		10.4	0.393		
E1		8.5			0.334	
G	4.88		5.28	0.192		0.208
L	15		15.85	0.590		0.625
L2	1.27		1.4	0.050		0.055
L3	1.4		1.75	0.055		0.068
М	2.4		3.2	0.094		0.126
R		0.4			0.015	
V2	0°		4°	T		


D²PAK MECHANICAL DATA


DIM		mm.			inch		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А	4.40		4.60	0.173		0.181	
A1	2.40		2.72	0.094		0.107	
b	0.61		0.88	0.024		0.034	
b1	1.14		1.70	0.044		0.066	
С	0.49		0.70	0.019		0.027	
c2	1.23		1.32	0.048		0.052	
D	8.95		9.35	0.352		0.368	
е	2.40		2.70	0.094		0.106	
e1	4.95		5.15	0.194		0.202	
Е	10		10.40	0.393		0.410	
L	13		14	0.511		0.551	
L1	3.50		3.93	0.137		0.154	
L2	1.27		1.40	0.050		0.055	

TO-262 (I²PAK) MECHANICAL DATA

* on sales type

STP200NF04 - STB200NF04 - STB200NF04-1

Table 10: Revision History

Date	Revision	Description of Changes
28-Sep-2004	2	New Stylesheet. No Content Change
11-Oct-2004	3	Final datasheet

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

