

STF13NM60N-H

N-channel 600 V, 0.28 Ω 11 A MDmesh™ II Power MOSFET in TO-220FP

Features

Туре	V _{DSS} (@Tjmax)	R _{DS(on)} max	I _D
STF13NM60N-H	650 V	< 0.36 Ω	11 A

- 100% avalanche tested
- Low input capacitance and gate charge
- Low gate input resistance

Application

■ Switching applications

Description

yosolete

This series of devices implements second generation MDmeshTM technology. This revolutionary Power MOSFET associates a new vertical structure to the company's sinplicayout to yield one of the world's lowes' con-resistance and gate charge. It is therefore suitable for the most demanding high efficiency converters.

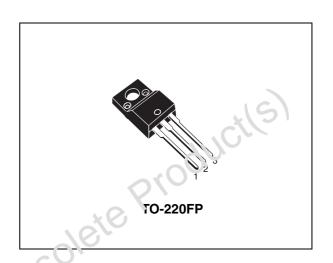


Figure 1. Internal schematic diagram

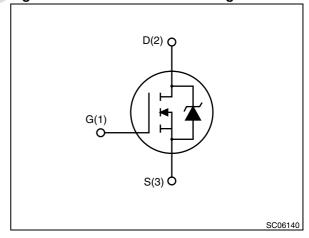


Table 1. Device summary

Order codes	Marking	Packages	Packaging
STF13NM60N-H ⁽¹⁾	13NM60N	TO-220FP	Tube

The device meets ECOPACK® standards, an environmentally-friendly grade of products commonly referred to as "halogen-free". See <u>Section 4</u>: <u>Package mechanical data</u>.

January 2010 Doc ID 16963 Rev 1 1/13

Contents STF13NM60N-H

Contents

1	Electrical ratings 3
2	Electrical characteristics 4 2.1 Electrical characteristics (curves) 6
3	Test circuits9
4	Package mechanical data
5	Revision history12
0050	Electrical characteristics

STF13NM60N-H Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)	600	V
V _{GS}	Gate-source voltage	± 25	V
I _D	Drain current (continuous) at T _C = 25 °C	11 ⁽¹⁾	Α
I _D	Drain current (continuous) at T _C = 100 °C	6.93 ⁽¹⁾	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	44 ⁽¹⁾	Α
P _{TOT}	Total dissipation at T _C = 25 °C	25	SV/
dv/dt (3)	Peak diode recovery voltage slope	15	V/ns
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t=1 s;T _C =25 °C)	257(1	V
T _{stg}	Storage temperature	–5₃ to 150	°C
T _j	Max. operating junction temperature	150	°C

- 1. Limited only by maximum temperature allowed
- 2. Pulse width limited by safe operating area
- 3. $I_{SD} \le 11$ A, di/dt ≤ 400 A/ μ s, $V_{DD} \le 80\%$ $Y_{(b.7),7SS}$

Table 3. Thermal data

Symbol	ra ar neter	Value	Unit
R _{thj-case}	Thermal registance junction-case max	5	°C/W
R _{thj-amb}	Thernal :esistance junction-ambient max	62.5	°C/W
Tı	Maximum lead temperature for soldering purpose	300	°C

Nobie 4. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AS}	Avalanche current, repetitive or not-repetitive (pulse width limited by Tj max)	3.5	Α
E _{AS}	Single pulse avalanche energy (starting T _J =25 °C, I _D =I _{AS} , V _{DD} =50 V)	200	mJ

Electrical characteristics STF13NM60N-H

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 5. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	600			٧
dv/dt ⁽¹⁾	Drain source voltage slope	V _{DD} =480 V, I _D = 9 A, V _{GS} =10 V		45		V/ns
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = Max rating V _{DS} = Max rating, @125 °C		\C	10	μΑ μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 20 V	OG		0.1	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on resistance	$V_{GS} = 10 \text{ V}, I_D = 5.5 \text{ A}$		0.28	0.36	Ω

^{1.} Characteristic value at turn off on inductive load

Table 6. Dynamic

	Symbol Parameter		Test conditions	Min.	Тур.	Max.	Unit
	g _{fs} ⁽¹⁾	Forward transcenductance	V _{DS} =15 V _, I _D = 5.5 A	-	7	-	S
	C _{iss} C _{oss} C _{rss}	Input capacitance Cut, ui capacitance Reverse transfer capacitance	$V_{DS} = 50 \text{ V, f} = 1 \text{ MHz,}$ $V_{GS} = 0$	-	790 60 3.6	-	pF pF pF
Obsole	C _{oss eq.} (2)	Equivalent output capacitance	V _{GS} = 0, V _{DS} = 0 to 480 V	-	135	-	pF
	Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	$V_{DD} = 480 \text{ V}, I_D = 11 \text{ A},$ $V_{GS} = 10 \text{ V},$ (see Figure 17)		30 15 4		nC nC nC
	R _G	Gate input resistance	f=1 MHz Gate DC Bias=0 Test signal level = 20 mV open drain	-	4.7	-	Ω

^{1.} Pulsed: Pulse duration = 300 μs, duty cycle 1.5%

^{2.} $C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DS}

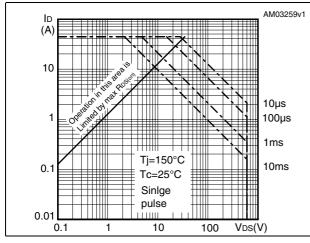
Table 7. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$\begin{matrix} t_{\rm d(on)} \\ t_{\rm r} \\ t_{\rm d(off)} \\ t_{\rm f} \end{matrix}$	Turn-on delay time Rise time Turn-off delay time Fall time	V_{DD} = 300 V, I_{D} = 5.5 A R_{G} = 4.7 Ω V_{GS} = 10 V (see Figure 16)	-	3 8 30 10	-	ns ns ns ns

Table 8. Source drain diode

Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
I _{SD}	Source-drain current Source-drain current (pulsed)		-	. \C	11 14	A A
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 11 A, V _{GS} = 0	<u></u>		1.5	V
t _{rr} Q _{rr}	Reverse recovery time Reverse recovery charge	$I_{SD} = 9 \text{ A}, \text{ di/dt} = 100 \text{ A/}_{r}\text{'s}$ $V_{DD} = 100 \text{ V}$	0.0	230		ns μC
I _{RRM}	Reverse recovery current	(see Figure 18)		18		Α
t _{rr} Q _{rr}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{SD} = 9 \text{ A}$, $\forall i, \forall i = 100 \text{ A/µs}$ $V_{DD} = 100 \text{ V}$, $T_j = 150 \text{ °C}$ (See Figure 18)	-	290 190 17		ns μC Α
I _{RRM}	neverse recovery current	(Sea Suite 10)		17		А

Pulse width limited by safe operating area


^{2.} Pulsed: pulse duration = 300 μs, duty cycle 1.5%

Electrical characteristics STF13NM60N-H

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area

Figure 3. Thermal impedance

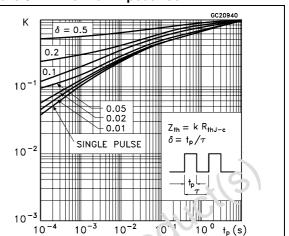
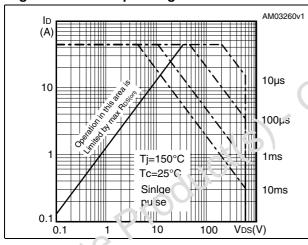



Figure 4. Safe operating area for DPAK

Figure 5. Therma in padance for DPAK

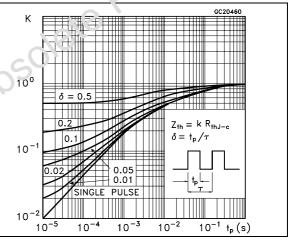
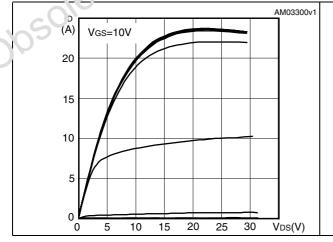
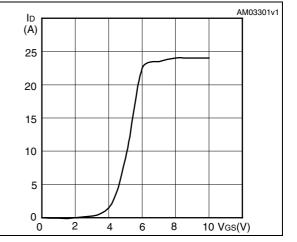




Figure 6. Curput characteristics

Figure 7. Transfer characteristics

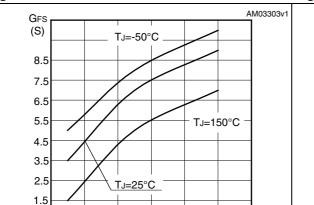

6/13 Doc ID 16963 Rev 1

Figure 8. Transconductance

2

0

4

6

8

10

Figure 9. Static drain-source on resistance

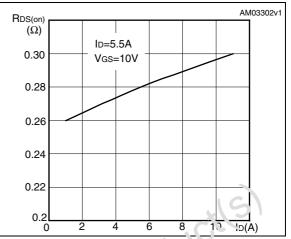
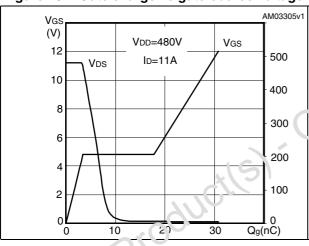



Figure 10. Gate charge vs gate-source voltage Figure 11. Capacitance var at ons

ID(A)

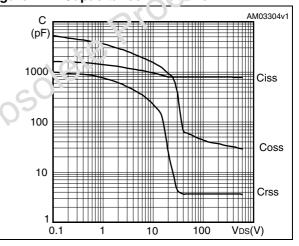
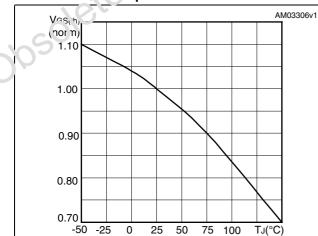
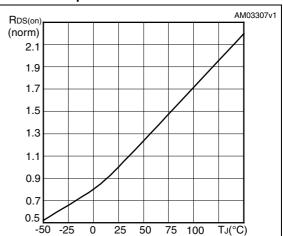
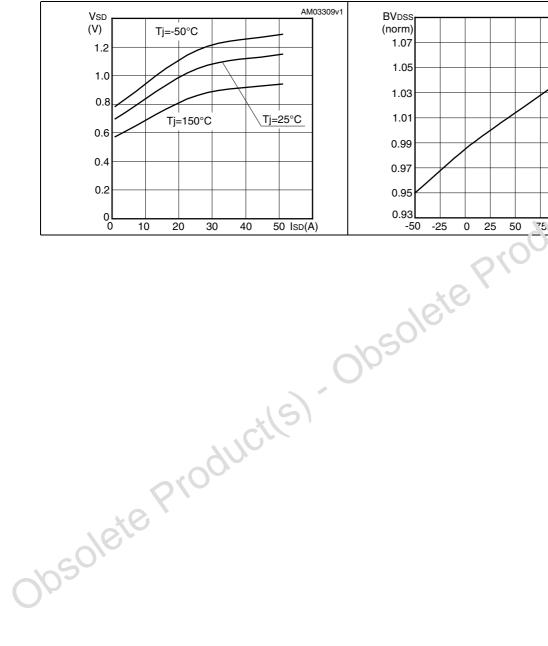
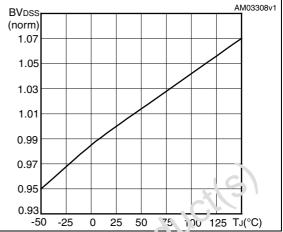




Figure 12. Norma ized gate threshold voltage Figure 13. Normalized on resistance vs temperature




577

Electrical characteristics STF13NM60N-H

Figure 14. Source-drain diode forward characteristics

Figure 15. Normalized B_{VDSS} vs temperature

577 8/13 Doc ID 16963 Rev 1

STF13NM60N-H Test circuits

3 Test circuits

Figure 16. Switching times test circuit for resistive load

Figure 17. Gate charge test circuit

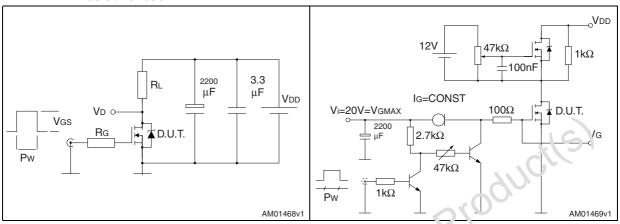


Figure 18. Test circuit for inductive load switching and diode recovery times

Figure 19. Unclamped inductive load test

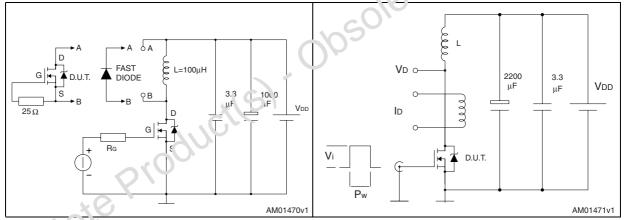
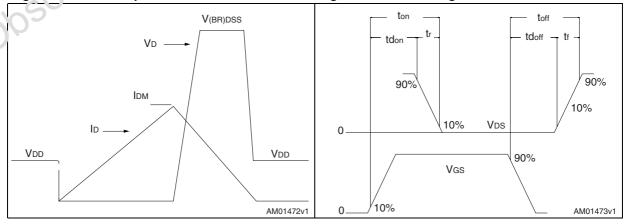
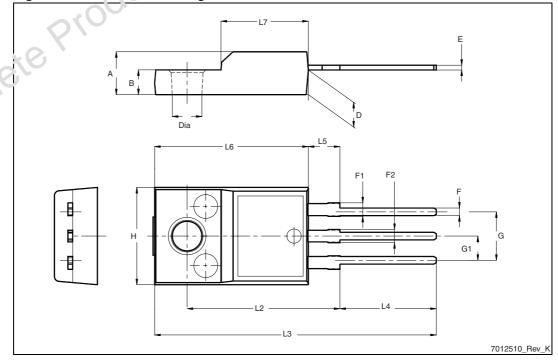



Figure 20. Unclamped inductive waveform

Figure 21. Switching time waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.



577

Table 9. TO-220FP mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
Α	4.4		4.6
В	2.5		2.7
D	2.5		2.75
Е	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2		16	
L3	28.6	1010	30.6
L4	9.8		10.6
L5	2.9	5	3.6
L6	15.9		16.4
L7	9		9.3
Dia	.(5)		3.2

Figure 22. TO 227FP drawing

Doc ID 16963 Rev 1 11/13

Revision history STF13NM60N-H

5 Revision history

Table 10. Document revision history

Date	Revision	Changes
08-Jan-2010	1	First release

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidia rics (ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and servings described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property 'ig 't's 's granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warrancy covering the use in any manner whatsoever of such third party products or services or any intellectual property contained the rain.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN VINING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OF WANDANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROFINITY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE VISED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST | roducts with provisions different from the statements and/or technical features set forth in this document shall immediately void any warran'ty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liabil'ity of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 16963 Rev 1

13/13