Linear Regulator - Low Output Voltage, Ultra-Fast Low Dropout, Enable # 3.0 A The NCP5663/NCV5663 is a high performance, low dropout linear regulator designed for high power applications that require up to 3.0 A current. It is offered in both fixed and adjustable output versions. With output voltages as low as 0.9 V and ultra-fast response times for load transients, the NCP5663/NCV5663 also provides additional features such as Enable and Error Flag (for the fixed output version), increasing the utility of this device. A thermally robust, 5 pin D²PAK, combined with an architecture that offers low ground current (independent of load), provides for a superior high-current LDO solution. #### **Features** - Ultra–Fast Transient Response (Settling Time: 1–3 μs) - Low Noise Without Bypass Capacitor (28 μV_{rms)} - Low Ground Current Independent of Load (3.0 mA Maximum) - Fixed/Adjustable Output Voltage Versions - Enable Function - Error Flag (Fixed Output Version) - Current Limit Protection - Thermal Protection - 0.9 V Reference Voltage for Ultra-Low Output Operation - Power Supply Rejection Ratio > 65 dB - NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable - This is a Pb-Free Device # **Applications** - Servers - ASIC Power Supplies - Post Regulation for Power Supplies - Constant Current Source - Networking Equipment - Gaming and STB Modules ## ON Semiconductor® http://onsemi.com # MARKING DIAGRAM D²PAK CASE 936A Tab = Ground Pin 1. Enable - 2. V_{in} - 3. Ground - 4. V_{out} - 5. Adj (adjustable output) - 5. Error Flag (fixed output) = P or V y = A for Adjustable Version B for Fixed 1.5 V Version C for Fixed 1.8 V Version A = Assembly Location W = Wafer Lot Y = Year WW = Work Week G = Pb-Free #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet. # PIN FUNCTION DESCRIPTION | Pin
Adj/Fixed | Pin Name | Description | |------------------|-------------------------------|--| | 1 | Enable | This pin allows for on/off control of the regulator. To disable the device, connect to Ground. If this function is not in use, connect to $V_{\rm in}$. | | 2 | V _{in} | Positive Power Supply Input Voltage | | 3 | Ground | Power Supply Ground | | 4 | V _{out} | Regulated Output Voltage | | 5 | Adj
(Adjustable Version) | This pin is connected to the resistor divider network and programs the output voltage. | | 5 | Error Flag
(Fixed Version) | An Error Flag is triggered when the output voltage is out of regulation excluding transient signals that may occur. Requires a pullup resistor $\approx 100 \text{ k}\Omega$. | ## **ABSOLUTE MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |--|--------------------------------------|------------------|------| | Input Voltage (Note 1) | V _{in} | 18 | V | | Output Pin Voltage | V _{out} | -0.3 to Vin +0.3 | V | | Adjust Pin Voltage | V_{adj} | -0.3 to Vin +0.3 | V | | Enable Pin Voltage | V _{en} | -0.3 to Vin +0.3 | V | | Error Flag Voltage | V _{ef} | -0.3 to Vin +0.3 | V | | Error Flag Current | l _{ef} | 3.0 | mA | | Thermal Characteristics (Note 1) Thermal Resistance Junction-to-Air (Note 2) Thermal Resistance Junction-to-Case | R _{θJA}
R _{θJC} | 45
5.0 | °C/W | | Operating Junction Temperature Range | T _J | -40 to +150 | °C | | Storage Temperature Range | T _{stg} | -55 to +150 | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. NOTE: This device series contains ESD protection and exceeds the following tests: Human Body Model (HBM) JESD 22-A114-B Machine Model (MM) JESD 22-A115-A. - 1. Refer to Electrical Characteristics table and Application Information section for Safe Operating Area. - 2. As measured using a copper heat spreading area of 625 mm², 1 oz. copper thickness. # **ELECTRICAL CHARACTERISTICS** $(V_{in}-V_{out}=1.5~V, for typical values~T_J=25^{\circ}C, for min/max~values~T_J=-40^{\circ}C~to~85^{\circ}C~(125^{\circ}C~for~NCV~versions),~C_{in}=C_{out}=150~\mu F~unless~otherwise~noted.)$ | Characteristic | Symbol | Min | Тур | Max | Unit | |--|---------------------|---------------------|---------------|---------------------|---------------| | ADJUSTABLE OUTPUT VERSION | | | | | | | Input Voltage | V _{in} | 2.0 | _ | 9.0 | V | | Output Noise Voltage | V _n | - | 28 | - | μV_{rms} | | Output Voltage Accuracy $ \begin{split} T_J &= 25^{\circ}\text{C (V}_{in} = \text{V}_{out} + 1.5 \text{ V to 7.0 V, I}_{out} = 10 \text{ mA to 3.0 A)} \\ T_J &= -20 \text{ to } + 125^{\circ}\text{C (V}_{in} = \text{V}_{out} + 1.5 \text{ V to 7.0 V, I}_{out} = 10 \text{ mA to 3.0 A)} \\ T_J &= -40 \text{ to } + 150^{\circ}\text{C (V}_{in} = \text{V}_{out} + 1.5 \text{ V to 7.0 V, I}_{out} = 10 \text{ mA to 3.0 A)} \end{split} $ | | -1%
-1.5%
-2% | -
0.9
- | +1%
+1.5%
+2% | V | | Adjustable Pin Input Current | I _{adj} | - | 40 | - | nA | | Line Regulation (I_{out} = 10 mA, V_{out} +1.5 V < V_{in} < 7.0 V) | REG _{line} | - | 0.03 | - | % | | Load Regulation (10 mA < I _{out} < 3.0 A) | | - | 0.03 | - | % | | Dropout Voltage (I _{out} = 3.0 A) | V_{DO} | - | 1.0 | 1.3 | V | | Peak Output Current Limit | | 3.0 | - | - | Α | | Internal Current Limitation | | - | 4.5 | - | Α | | Ripple Rejection (120 Hz) Ripple Rejection (1 kHz) | | - | 70
65 | -
- | dB | | Thermal Shutdown (Guaranteed by Design) | | - | 160 | - | °C | | Ground Current $I_{out} = 3.0 \; \text{A} \\ \text{Disabled State}$ | | -
- | 1.3
10 | 3.0
300 | mA
μA | | Enable Input Threshold Voltage Voltage Increasing, On state, Logic High Voltage Decreasing, Off state, Logic Low | | 1.3
- | -
- | -
0.3 | V | | Enable Input Current $ {\hbox{Enable Pin Voltage} = 0.3 \ V_{max} } $ $ {\hbox{Enable Pin Voltage} = 1.3 \ V_{min} } $ | | -
- | 0.5
0.5 | -
- | μΑ | # **ELECTRICAL CHARACTERISTICS** $(V_{in}-V_{out}=1.5~V, for typical values~T_J=25^{\circ}C, for min/max~values~T_J=-40^{\circ}C~to~85^{\circ}C~(125^{\circ}C~for~NCV~versions),~C_{in}=C_{out}=150~\mu F~unless~otherwise~noted.)$ | Characteristic | Symbol | Min | Тур | Max | Unit | |--|------------------------------------|---------------------|----------------------------|---------------------|-----------------------| | FIXED OUTPUT VOLTAGE | | | • | | - | | Input Voltage | V _{in} | 2.0 | _ | 9.0 | V | | Output Noise Voltage (V _{out} = 0.9 V) | V _n | - | 28 | - | μV_{rms} | | Output Voltage Accuracy (Note 3) $T_{J} = 25^{\circ}C \; (V_{in} = V_{out} + 1.5 \; V \; to \; 7.0 \; V, \; I_{out} = 10 \; mA \; to \; 3.0 \; A)$ $T_{J} = -20 \; to \; +125^{\circ}C \; (V_{in} = V_{out} + 1.5 \; V \; to \; 7.0 \; V, \; I_{out} = 10 \; mA \; to \; 3.0 \; A)$ $T_{J} = -40 \; to \; +150^{\circ}C \; (V_{in} = V_{out} + 1.5 \; V \; to \; 7.0 \; V, \; I_{out} = 10 \; mA \; to \; 3.0 \; A)$ | | -1%
-1.5%
-2% | –
V _{out}
– | +1%
+1.5%
+2% | V | | Line Regulation (I _{out} = 10 mA, V _{out} +1.5 V < V _{in} < 7.0 V) | REG _{line} | - | 0.03 | - | % | | Load Regulation (10 mA < I _{out} < 3.0 A) | REG _{load} | - | 0.2 | - | % | | Dropout Voltage (I _{out} = 3.0 A) | V_{DO} | - | 1.0 | 1.3 | V | | Peak Output Current Limit | l _{out} | 3.0 | _ | - | Α | | Internal Current Limitation | I _{lim} | - | 4.5 | - | Α | | Ripple Rejection (120 Hz) Ripple Rejection (1 kHz) | RR | - | 70
65 | -
- | dB | | Thermal Shutdown (Guaranteed by Design) | T _{SHD} | _ | 160 | - | °C | | Ground Current I _{out} = 3.0 A Disabled State | I _q
I _{qds} | -
- | 1.3
30 | 3.0
300 | mA
μA | | Enable Input Threshold Voltage Voltage Increasing, On state, Logic High Voltage Decreasing, Off state, Logic Low | | 1.3
- | -
- | -
0.3 | V | | Enable Input Current $ \begin{aligned} \text{Enable Pin Voltage} &= 0.3 \text{ V}_{\text{max}} \\ \text{Enable Pin Voltage} &= 1.3 \text{ V}_{\text{min}} \end{aligned} $ | l _{en} | -
- | 0.5
0.5 | -
- | μΑ | | Error Flag (Fixed Output) | V _{cflt} | 91 | 94 | 97 | % of V _{out} | | Error Flag Output Low Voltage Saturation (I _{ef} = 1.0 mA) | V_{cfdo} | - | 200 | - | mV | | Error Flag Leakage | l _{efleak} | - | 1.0 | - | μΑ | | Error Flag Blanking Time (Note 4) | T _{ef} | - | 50 | - | μs | Refer to Ordering Information Table for available voltage options. Can be disabled per customer request. Figure 1. Typical Schematic, Adjustable Output Version Figure 2. Typical Schematic, Fixed Output Version 1.30 $V_{out} = 2.5 \text{ V}$ 1.20 $C_{in} = 150 \text{ } \mu\text{F}$ $C_{out} = 10 \text{ to } 150 \text{ } \mu\text{F}$ 1.10 $T_{J} = 25^{\circ}\text{C}$ 0.90 0.90 0.70 0.5 1.0 1.5 2.0 2.5 3.0 I_{out} , OUTPUT CURRENT (A) Figure 1. Dropout Voltage vs. Temperature Figure 2. Dropout Voltage vs. Output Current Figure 3. Ground Current vs. Temperature Figure 4. Short Circuit Current Limit vs. Temperature Figure 5. Output Voltage vs. Input Voltage Figure 6. Output Voltage vs. Output Load Current Figure 7. Output Current vs. Input-Output Voltage Differential Figure 8. Ripple Rejection vs. Frequency Figure 9. Noise Density vs. Frequency Figure 10. Noise Density vs. Frequency #### **APPLICATION INFORMATION** The NCP5663/NCV5663 is a high performance low dropout 3.0 A linear regulator suitable for high power applications, featuring an ultra–fast response time and low noise without a bypass capacitor. It is offered in both fixed and adjustable output versions with voltages as low as 0.9 V. Additional features, such as Enable and Error Flag (fixed output version) increase the utility of the NCP5663/NCV5663. It is thermally robust and includes the safety features necessary during a fault condition, which provide for an attractive high current LDO solution for server, ASIC power supplies, networking equipment applications, and many others. ### **Input Capacitor** The recommended input capacitor value is a 150 μF OSCON with an Equivalent Series Resistance (ESR) of 50 m Ω . It is especially required if the power source is located more than a few inches from the NCP5663/NCV5663. This capacitor will reduce device sensitivity and enhance the output transient response time. The PCB layout is very important and in order to obtain the optimal solution, the Vin and GND traces should be sufficiently wide to minimize noise and unstable operation. #### **Output Capacitor** Proper output capacitor selection is required to maintain stability. The NCP5663/NCV5663 is stable for C_{out} as low as $10~\mu F$ (Figures 15 and 16) and guaranteed to be stable at an output capacitance of, $C_{out} > 33~\mu F$ with an ESR between $50~m\Omega$ and $300~m\Omega$ over the output current range of 10~mA to 3.0~A. For PCB layout considerations, place the recommended ceramic capacitor close to the output pin and keep the leads short. This should help ensure ultra–fast transient response times. #### **Adjustable Output Operation** The application circuit for the adjustable output version is shown in Figure 1. The reference voltage is 0.9 V and the adjustable pin current is typically 40 nA. A resistor divider network, R1 and R2, is calculated using the following formula: $$R1 = R2 \left(\frac{V_{out}}{V_{ref}} - 1 \right)$$ Figure 17. To achieve the minimum output voltage, ADJ to V_{out} has to be connected together #### **Current Limit Operation** As the peak output current increases beyond its limitation, the device is internally clampled to 4.5 A, thus causing the output voltage to decrease and go out of regulation. This allows the device never to exceed the maximum power dissipation. #### **Error Flag Operation** The Error Flag pin on the NCP5663/NCV5663 will produce a logic Low when it drops below the nominal output voltage. Refer to the electrical characteristics for the threshold values at which point the Error Flag goes Low. When the NCP5663/NCV5663 is above the nominal output voltage, the Error Flag will remain at logic High. The external pullup resistor needs to be connected between V_{in} and the Error Flag pin. A resistor of approximately $100~k\Omega$ is recommended to minimize the current consumption. No pullup resistor is required if the Error Flag output is not being used. #### **Thermal Consideration** This series contains an internal thermal limiting circuit that is designed to protect the regulator in the event that the maximum junction temperature is exceeded. This feature provides protection from a catastrophic device failure due to accidental overheating. It is not intended to be used as a substitute for proper heat sinking. The maximum device power dissipation can be calculated by: $$P_{D} = \frac{T_{J(max)} - T_{A}}{R_{\theta,JA}}$$ The bipolar process employed for this IC is fully characterized and rated for reliable $18 \text{ V V}_{\text{CCmax}}$ operation. To avoid damaging the part or degrading it's reliability, power dissipation transients should be limited to under 30 W for D²PAK. For open-circuit to short-circuit transient, $$P_{DTransient} = V_{CCmax} * I_{SC}$$. Figure 18. Test Board used for Evaluation #### **ORDERING INFORMATION** | Device Nominal Output Voltage | | Package | Shipping† | |-------------------------------|--------------------------------|---------|-----------------| | NCP5663DSADJR4G | Adj | | 800 Tape & Reel | | NCP5663DS15R4G (Note 5) | Fixed, 1.5 V |] | 800 Tape & Reel | | NCP5663DS18R4G (Note 5) | 4G (Note 5) Fixed, 1.8 V | | 800 Tape & Reel | | NCP5663DS18G (Note 5) | G (Note 5) Fixed, 1.8 V | | 50 Units / Rail | | ICV5663DSADJR4G* Adj | | | 800 Tape & Reel | | NCV5663DS15R4G* (Note 5) | OS15R4G* (Note 5) Fixed, 1.5 V | | 800 Tape & Reel | ^{5.} Other fixed output voltages available at 0.9 V, 1.2 V, 2.5 V, 3.0 V, 3.3 V per request. †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable # **MECHANICAL CASE OUTLINE** #### D²PAK 5-LEAD CASE 936A-02 **ISSUE E** **DATE 28 JUL 2021** DUAL GUAGE BOTTOM VIEW SINGLE GUAGE SEATING DETAIL C TIP LEADFORM ROTATED 90° CW BOTTOM VIEW OPTIONAL CONSTRUCTIONS #### RECOMMENDED MOUNTING FOOTPRINT * For additional information on our Pb-Free strategy and soldering details, please download the IN Seniconductor Soldering and Mounting Techniques Reference Manual, SILDERRM/D. #### NOTES - 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. - 2. CONTROLLING DIMENSION: INCHES - TAB CONTOUR OPTIONAL WITHIN DIMENSIONS - DIMENSIONS U AND V ESTABLISH A MINIMUM MOUNTING SURFACE FOR TERMINAL 4. - DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS. MOLD FLASH AND GATE PROTRUSIONS NOT TO EXCEED 0.025 (0.635) MAXIMUM. | | INCHES | | MILLIN | ETERS | | |---------------|-----------|-------|-----------|--------|--| | DIM | MIN. | MAX. | MIN. | MAX. | | | Α | 0.396 | 0.403 | 9.804 | 10.236 | | | В | 0.356 | 0.368 | 9.042 | 9.347 | | | С | 0.170 | 0.180 | 4.318 | 4.572 | | | D | 0.026 | 0.036 | 0.660 | 0.914 | | | ED | 0.045 | 0.055 | 1.143 | 1.397 | | | Es | 0.018 | 0.026 | 0.457 | 0.660 | | | G | 0.067 | BSC | 1.702 BSC | | | | Н | 0.539 | 0.579 | 13.691 | 14.707 | | | К | 0.050 REF | | 1.270 REF | | | | L | 0.000 | 0.010 | 0.000 | 0.254 | | | М | 0.088 | 0.102 | 2.235 | 2.591 | | | N | 0.018 | 0.026 | 0.457 | 0.660 | | | Р | 0.058 | 0.078 | 1.473 | 1.981 | | | R | 0* | 8• | 0* | 8* | | | S | 0.116 REF | | 2.946 | 5 REF | | | U | 0.200 MIN | | 5.080 | MIN | | | $\overline{}$ | 0.250 MIN | | 6.350 | MIN | | ## **GENERIC MARKING DIAGRAM*** = Device Code XXXXXX = Assembly Location Α WL = Wafer Lot = Year WW = Work Week G = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking. | DOCUMENT NUMBER: | 98ASH01006A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | |------------------|-------------|---| D2PAK 5-LEAD ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the **DESCRIPTION:** **PAGE 1 OF 1** onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. # PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com **TECHNICAL SUPPORT** North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative