

STK850 N-channel 30V - 0.0024Ω - 30A - PolarPAK[®] STripFET™ Power MOSFET

Features

	Туре	V_{DSS}	R _{DS(on)}	R _{DS(on)} *Q _g	P _{TOT}
ĺ	STK850	30V	<0.0029Ω	$71nC^*m\Omega$	5.2W

- Ultra low top and bottom junction to case thermal resistance
- Very low capacitances
- 100% Rg tested
- Fully encapsulated die
- 100% Matte tin finish (in compliance with the 2002/95/EC european directive)
- PolarPAK[®] is a trademark of VISHAY

Application

Switching applications

Description

This Power MOSFET is the latest development of STMicroelectronics unique "single feature size" strip-based process. The resulting transistor shows extremely high packing density for low onresistance, moreover the double sides cooling package with ultra low junction to case thermal resistance allows to handle higher levels of current.

Table 1.	Device	summary
	DCVICC	Summary

Order code	Marking	Package	Packaging
STK850	K850	PolarPAK [®]	Tape & reel

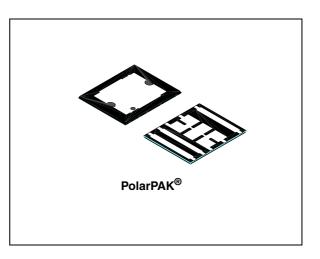
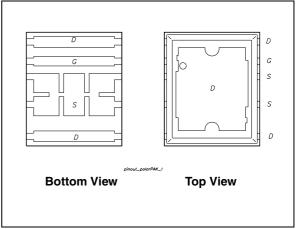



Figure 1. Internal schematic diagram

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	9
4	Package mechanical data 1	1
5	Revision history1	5

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage ($V_{GS} = 0$)	30	V
V _{GS} ⁽¹⁾	Gate-source voltage	± 16	V
V _{GS} ⁽²⁾	Gate-source voltage	± 18	V
I _D ⁽⁴⁾	Drain current (continuous) at T _C = 25°C	30	А
۱ _D	Drain current (continuous) at T _C = 100°C	18.75	Α
I _{DM} ⁽³⁾	Drain current (pulsed)	120	A
P _{TOT} ⁽⁴⁾	Total dissipation at $T_{C} = 25^{\circ}C$	5.2	W
	Derating factor	0.0416	W/°C
E _{AS} ⁽⁵⁾	Single pulse avalanche energy	1.4	J
Т _Ј T _{stg}	Operating junction temperature Storage temperature	-55 to 150	°C

1. Continuous mode

2. Guaranteed for test time \leq 15ms

3. Pulse width limited by package

4. When mounted on FR-4 board of 1inch², 2 oz. Cu. and \leq 10sec

5. Starting $T_J = 25^{\circ}C$, $I_D = 15A$, $V_{DD} = 25V$

Table 3.Thermal data

Symbol	ParameterTyp.Thermal resistance junction-amb20Thermal resistance junction-case (top drain)0.8		Max.	Unit
Rthj-amb ⁽¹⁾	Thermal resistance junction-amb	20	24	°C/W
Rthj-c ⁽²⁾	Thermal resistance junction-case (top drain)	0.8	1	°C/W
Rthj-c ⁽³⁾	Thermal resistance junction-case (source)	2.2	2.7	°C/W

1. When mounted on FR-4 board of 1inch², 2 oz. Cu. and \leq 10sec

2. Steady State

3. Measured at Source pin when the device is mounted on FR-4 board in steady state

2 Electrical characteristics

(T_{CASE}=25°C unless otherwise specified)

Table 4.	On/on					
Symbol	Parameter	Test conditions		Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_{D} = 250 \mu A, V_{GS} = 0$	30			V
I _{DSS}	Zero gate voltage drain current ($V_{GS} = 0$)	V _{DS} = Max rating, V _{DS} = Max rating,Tc=125°C			1 10	μΑ μΑ
I _{GSS}	Gate body leakage current (V _{DS} = 0)	$V_{GS} = \pm 16V$			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	1		2.5	V
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10V, I _D = 15A V _{GS} = 4.5V, I _D = 15A		0.0024 0.0029	0.0029 0.0035	Ω Ω

Table 4. On/off

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} =25V, f=1 MHz, V _{GS} =0		3150 940 90		pF pF pF
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V_{DD} =15V, I _D = 30A V_{GS} =4.5V (see Figure 16)		24.5 8 8.2	32.5	nC nC nC
Q _{gs1} Q _{gs2}	Pre V _{th} gate-to-source charge Post V _{th} gate-to-source charge	V_{DD} =15V, I_D = 12A V_{GS} =4.5V (see Figure 21)		0.6 7.2		nC nC
R _G	Gate input resistance	f=1 MHz Gate DC Bias = 0 Test signal level = 20mV open drain		1.1		Ω

	e milening amos					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on delay time Rise time	$V_{DD}=15V, I_{D}=15A,$ $R_{G}=4.7\Omega, V_{GS}=4.5V$ (see Figure 15)		20 57		ns ns
t _{d(off)} t _f	Turn-off delay time Fall time	V_{DD} =15V, I _D = 15A, R _G =4.7 Ω , V _{GS} =4.5V (see Figure 15)		31 13		ns ns

Table 6.Switching times

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} ⁽¹⁾	Source-drain current Source-drain current (pulsed)				30 120	A A
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 15A, V _{GS} =0			1.2	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I_{SD} = 30A, di/dt = 100A/µs, V _{DD} =20V, T _J =150°C (see Figure 20)		39 39.8 2		ns nC A

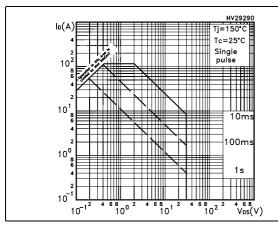
1. Pulse width limited by package

2. Pulsed: pulse duration = $300\mu s$, duty cycle 1.5%

PPA

Z_{thj-pcb}=k*R_{thj-pc}

101


R_{thj-pcb}= 56.5°C/W

10²†p(s)

57

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area

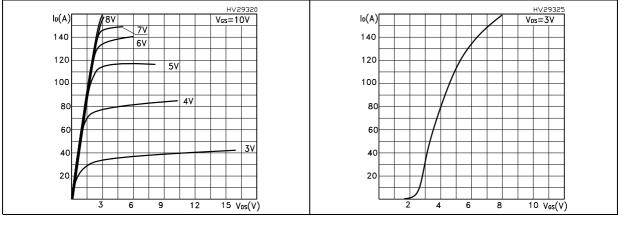


Figure 3.

ĸ

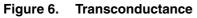
10

10

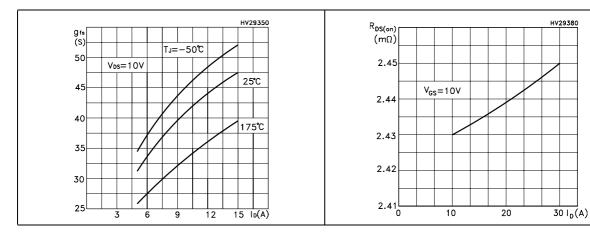
10

10-3

 $\delta = 0.$

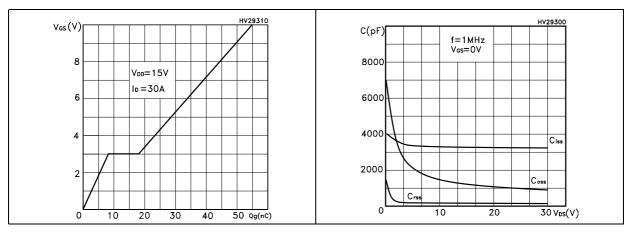

0.2

0.05


<u>0.02</u>

SINGLE PULSE

10-2


Thermal impedance

0.01

10-1

100

STK850

Figure 8. Gate charge vs gate-source voltage Figure 9. Capacitance variations

Figure 10. Normalized gate threshold voltage vs temperature

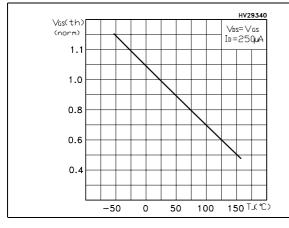
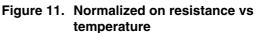



Figure 12. Source-drain diode forward characteristics

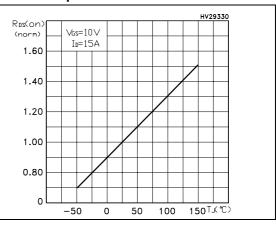
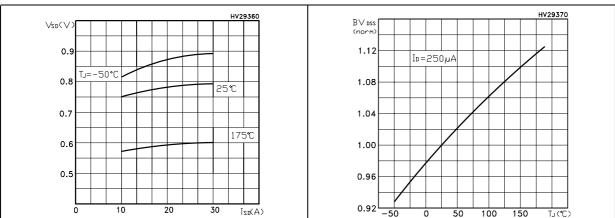
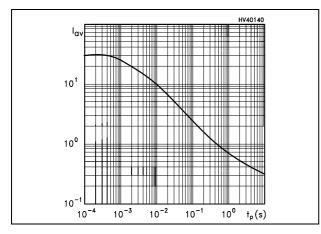




Figure 13. Normalized B_{VDSS} vs temperature

57

Figure 14. Allowable I_{AV} vs time in avalanche

The previous curve gives the single pulse safe operating area for unclamped inductive loads, under the following conditions:

 $P_{D(AVE)} = 0.5*(1.3*B_{VDSS}*I_{AV})$

E_{AS(AR)}=P_{D(AVE)} *t_{AV}

Where:

 I_{AV} is the allowable current in avalanche

 $P_{D(AVE)}$ is the average power dissipation in avalanche (single pulse)

 $t_{\mbox{\scriptsize AV}}$ is the time in avalanche

3 Test circuits

Figure 15. Switching times test circuit for resistive load

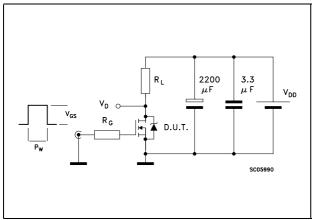
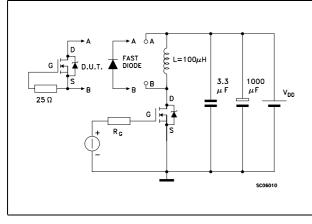
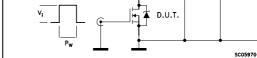
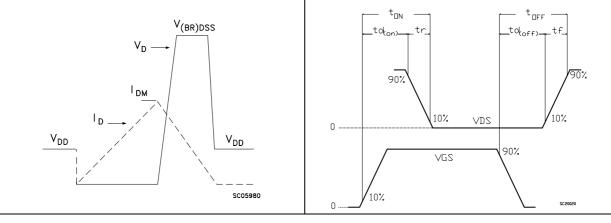
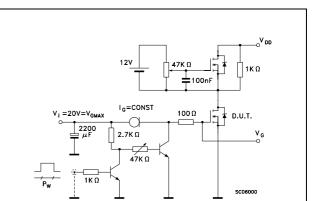




Figure 17. Test circuit for inductive load switching and diode recovery times





 $V_{\rm D}$

Figure 20. Switching time waveform

2200

μF

3.3 μF

V_{DD}

Figure 18. Unclamped inductive load test circuit

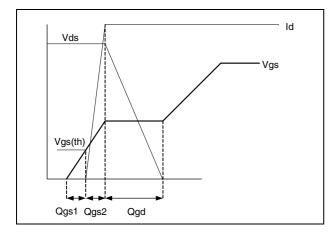

2222

Figure 16. Gate charge test circuit

57

Figure 21. Gate charge waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: *www.st.com*

Table 6. FolarPAR [®] (option L) mechanical data						
Def		mm			inch	
Ref.	Min.	Тур.	Max.	Min.	Тур.	Max.
A	0.75	0.80	0.85	0.030	0.031	0.033
A1			0.05			0.002
b1	0.48	0.58	0.68	0.019	0.023	0.027
b2	0.41	0.51	0.61	0.016	0.020	0.024
b3	2.19	2.29	2.39	0.086	0.090	0.094
b4	0.89	1.04	1.19	0.035	0.041	0.047
b5	0.23	0.33	0.43	0.009	0.013	0.017
С	0.20	0.25	0.30	0.008	0.010	0.012
D	6	6.15	6.30	0.236	0.242	0.248
D1	5.74	5.89	6.04	0.226	0.232	0.238
E	5.01	5.16	5.31	0.197	0.203	0.209
E1	4.75	4.90	5.05	0.187	0.193	0.199
H1	0.23			0.009		
H2	0.45		0.56	0.018		0.022
H3	0.31	0.41	0.51	0.012	0.016	0.020
H4	0.45		0.56	0.018		0.022
K1	4.22	4.37	4.52	0.166	0.172	0.178
K2	1.08	1.13	1.18	0.043	0.044	0.046
K3	1.37			0.054		
K4	0.24			0.009		
M1	4.30	4.50	4.70	0.169	0.177	0.185
M2	3.43	3.58	3.73	0.135	0.141	0.147
М3	0.22			0.009		
M4	0.05			0.002		
P1	0.15	0.20	0.25	0.006	0.008	0.010
T1	3.48	3.64	4.10	0.137	0.143	0.161
T2	0.56	0.76	0.95	0.022	0.030	0.037
Т3	1.20			0.047		
T4	3.90			0.154		
T5		0.18	0.36		0.007	0.014
<	0°	10°	12°	0°	10°	12°

 Table 8.
 PolarPAK[®] (option "L") mechanical data

Mz 10 D 9 8 G S Þ ĥ S Φţ 12 4 View A Ę М.3 M -M1 0 ₩ 154 П D 5 G 2 D 1 S 3 S 4 (Top View) 6.15 0.508 0.508 0.584 0.508 0.406 0.58 (\Box) 0.381 0.381 2.286 -D. ь1 ь1 b2 0.393 9 G 10 D 6 D 7 S 8 S <u>7</u> Л P1--K.M-4.370 5.16 Ì P1 5 А -ь4 $\frac{1}{4}$ 0.393 .<u>β</u>29 b5 1.489 0.825 0.685 0.685 1.420 1.042

Figure 22. PolarPAK[®] (option "L") drawings

57

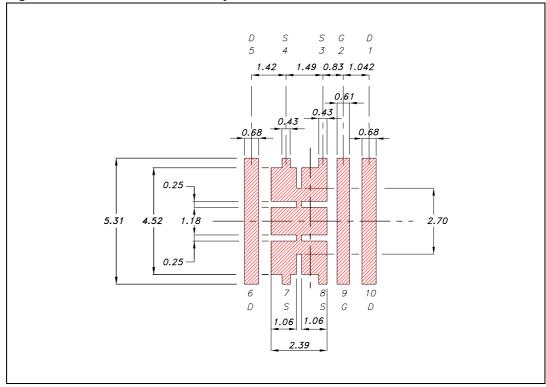


Figure 23. Recommended PAD layout

14/16

5 Revision history

Table 9.Document revision history

Date	Revision	Changes
10-Nov-2005	1	First version
19-Dec-2005	2	Complete version
30-Jan-2006	3	Modified description on first page
21-Mar-2006	4	The document has been reformatted
25-May-2006	5	New note on Table 2
10-Oct-2006	6	Modified general features
08-May-2007	7	New data on Table 5 and new Figure 21
03-Sep-2007	8	Updated mechanical data
01-Oct-2007	9	Inserted new Figure 23: Recommended PAD layout

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

16/16

