PZT751T1

Preferred Device

PNP Silicon Planar Epitaxial Transistor

This PNP Silicon Epitaxial transistor is designed for use in industrial and consumer applications. The device is housed in the SOT-223 package which is designed for medium power surface mount applications.

Features

- High Current: 2.0 A
- The SOT-223 Package can be soldered using wave or reflow.
- SOT-223 package ensures level mounting, resulting in improved thermal conduction, and allows visual inspection of soldered joints. The formed leads absorb thermal stress during soldering, eliminating the possibility of damage to the die
- NPN Complement is PZT651T1
- Pb-Free Package is Available

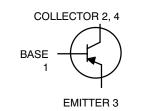
MAXIMUM RATINGS (T_C = 25° C unless otherwise noted)

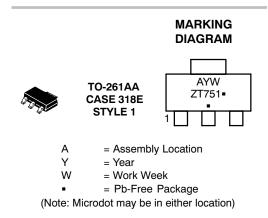
Symbol	Value	Unit
V_{CEO}	60	Vdc
V _{CBO}	80	Vdc
V_{EBO}	5.0	Vdc
Ι _C	2.0	Adc
PD	0.8 6.4	W mW/°C
T _{stg}	-65 to 150	°C
ТJ	150	°C
	V _{CEO} V _{CBO} V _{EBO} I _C P _D T _{stg}	$\begin{array}{c c} V_{CEO} & 60 \\ \hline V_{CBO} & 80 \\ \hline V_{EBO} & 5.0 \\ \hline I_C & 2.0 \\ \hline P_D & 0.8 \\ 6.4 \\ \hline T_{stg} & -65 \text{ to } 150 \\ \end{array}$

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Resistance from Junction-to Ambient in Free Air	$R_{\theta JA}$	156	°C/W
Maximum Temperature for Soldering Purposes	TL	260	°C
Time in Solder Bath		10	Sec

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


 Device mounted on a FR-4 glass epoxy printed circuit board using minimum recommended footprint.



ON Semiconductor®

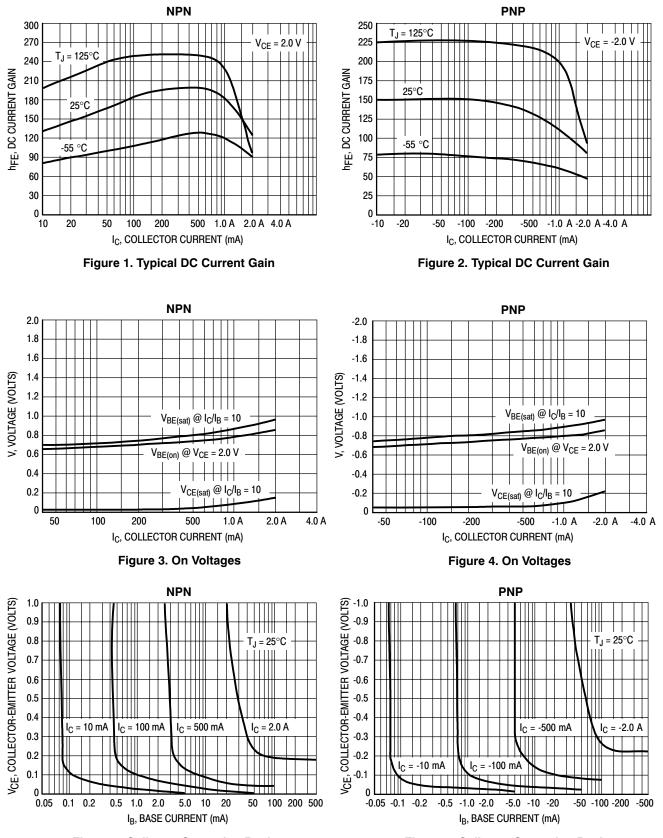
http://onsemi.com

SOT-223 PACKAGE HIGH CURRENT PNP SILICON TRANSISTOR SURFACE MOUNT

ORDERING INFORMATION

Device	Package	Shipping
PZT751T1	SOT-223	1000 / Tape & Reel
PZT751T1G	SOT-223 (Pb-Free)	1000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


Preferred devices are recommended choices for future use and best overall value.

PZT751T1

ELECTRICAL CHARACTERISTICS (T_A = $25^{\circ}C$ unless otherwise noted)

Characteristics	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage $(I_C = 10 \text{ mAdc}, I_B = 0)$	V _{(BR)CEO}	60	-	Vdc
Collector-Emitter Breakdown Voltage $(I_C = 100 \ \mu Adc, I_E = 0)$	V _{(BR)CBO}	80	-	Vdc
Emitter-Base Breakdown Voltage $(I_E = 10 \ \mu Adc, I_C = 0)$	V _{(BR)EBO}	5.0	-	Vdc
Base-Emitter Cutoff Current (V _{EB} = 4.0 Vdc)	I _{EBO}	-	0.1	μAdc
Collector-Base Cutoff Current $(V_{CB} = 80 \text{ Vdc}, I_E = 0)$	I _{CBO}	-	100	nAdc
ON CHARACTERISTICS (Note 2)				
$ \begin{array}{l} \text{DC Current Gain} \\ (I_{C} = 50 \text{ mAdc}, V_{CE} = 2.0 \text{ Vdc}) \\ (I_{C} = 500 \text{ mAdc}, V_{CE} = 2.0 \text{ Vdc}) \\ (I_{C} = 1.0 \text{ Adc}, V_{CE} = 2.0 \text{ Vdc}) \\ (I_{C} = 2.0 \text{ Adc}, V_{CE} = 2.0 \text{ Vdc}) \end{array} $	h _{FE}	75 75 75 40		-
Collector-Emitter Saturation Voltages ($I_C = 2.0 \text{ Adc}, I_B = 200 \text{ mAdc}$) ($I_C = 1.0 \text{ Adc}, I_B = 100 \text{ mAdc}$)	V _{CE(sat)}	-	0.5 0.3	Vdc
Base-Emitter Voltages ($I_C = 1.0 \text{ Adc}, V_{CE} = 2.0 \text{ Vdc}$)	V _{BE(on)}	-	1.0	Vdc
Base-Emitter Saturation Voltage ($I_C = 1.0 \text{ Adc}, I_B = 100 \text{ mAdc}$)	V _{BE(sat)}	-	1.2	Vdc
Current-Gain-Bandwidth ($I_C = 50 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}, f = 100 \text{ MHz}$)	fT	75	-	MHz

2. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle = 2.0%.

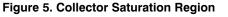
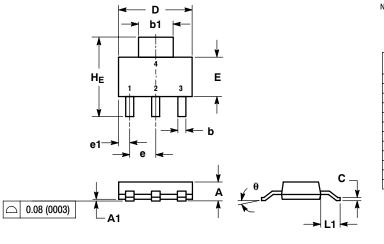
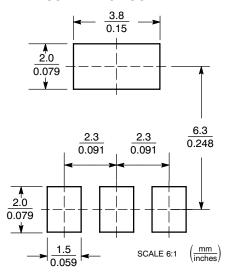



Figure 6. Collector Saturation Region

PZT751T1

PACKAGE DIMENSIONS

SOT-223 (TO-261) CASE 318E-04 ISSUE L



NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.50	1.63	1.75	0.060	0.064	0.068
A1	0.02	0.06	0.10	0.001	0.002	0.004
b	0.60	0.75	0.89	0.024	0.030	0.035
b1	2.90	3.06	3.20	0.115	0.121	0.126
С	0.24	0.29	0.35	0.009	0.012	0.014
D	6.30	6.50	6.70	0.249	0.256	0.263
Е	3.30	3.50	3.70	0.130	0.138	0.145
е	2.20	2.30	2.40	0.087	0.091	0.094
e1	0.85	0.94	1.05	0.033	0.037	0.041
L1	1.50	1.75	2.00	0.060	0.069	0.078
HE	6.70	7.00	7.30	0.264	0.276	0.287
θ	0°	-	10°	0°	-	10°

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agsociated with such unintended or unauthorized use payes that SCILLC was negligent in ediging or to fees and or personal injury or death agsociated with such unintended or the paylic to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative