Voltage Detector Series

The NCP304 and NCP305 series are second generation ultra-low current voltage detectors. These devices are specifically designed for use as reset controllers in portable microprocessor based systems where extended battery life is paramount.

Each series features a highly accurate undervoltage detector with hysteresis which prevents erratic system reset operation as the comparator threshold is crossed.

The NCP304 series consists of complementary output devices that are available with either an active high or active low reset output. The NCP305 series has an open drain N-Channel output with an active low reset output.

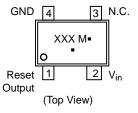
The NCP304 and NCP305 device series are available in the SC-82AB package with standard undervoltage thresholds. Additional thresholds that range from 0.9 V to 4.9 V in 100 mV steps can be manufactured.

Features

- Quiescent Current of 1.0 μA Typical
- High Accuracy Undervoltage Threshold of 2.0%
- Wide Operating Voltage Range of 0.8 V to 10 V
- Complementary or Open Drain Reset Output
- Active Low or Active High Reset Output
- Pb-Free Packages are Available
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

Typical Applications

- Microprocessor Reset Controller
- Low Battery Detection
- Power Fail Indicator
- Battery Backup Detection

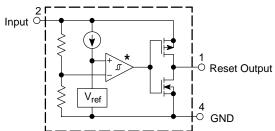

ON

ON Semiconductor®

http://onsemi.com

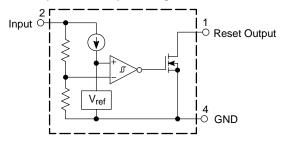
PIN CONNECTIONS AND MARKING DIAGRAM

XXX = Specific Device Code M = Date Code


■ = Pb–Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION


See detailed ordering , marking and shipping information in the ordering information section on page 19 of this data sheet.

NCP304xSQxxT1 Complementary Output Configuration

This device contains 38 active transistors.

NCP305LSQxxT1 Open Drain Output Configuration

This device contains 37 active transistors.

* The representative block diagram depicts active low reset output 'L' suffix devices. The comparator input is interchanged for the active high output 'H' suffix devices.

Figure 1. Representative Block Diagrams

MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
Input Power Supply Voltage (Pin 2)	V _{in}	12	V
Output Voltage (Pin 1) Complementary, NCP304 N-Channel Open Drain, NCP305	V _{OUT}	-0.3 to V _{in} +0.3 -0.3 to 12	V
Output Current (Pin 1) (Note 2)	I _{OUT}	70	mA
Thermal Resistance, Junction-to-Air	$R_{\theta JA}$	285	°C/W
Maximum Junction Temperature	TJ	+125	°C
Storage Temperature Range	T _{stg}	−55 to +150	°C
Latchup Performance (Note 3) Positive Negative	ILATCHUP	500 170	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- This device series contains ESD protection and exceeds the following tests: Human Body Model 2000 V per MIL-STD-883, Method 3015. Machine Model Method 200 V.
- 2. The maximum package power dissipation limit must not be exceeded.

$$P_D = \frac{T_{J(max)} - T_A}{R_{\theta JA}}$$

3. Maximum Ratings per JEDEC standard JESD78.

ELECTRICAL CHARACTERISTICS (For all values T_A = 25°C, unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
NCP304/5 - 0.9		•		•	
Detector Threshold (Pin 2, V _{in} Decreasing)	V _{DET} -	0.882	0.900	0.918	V
Detector Threshold Hysteresis (Pin 2, V _{in} Increasing)	V _{HYS}	0.027	0.045	0.063	V
Supply Current (Pin 2) (V _{in} = 0.8 V) (V _{in} = 2.9 V)	l _{in}	- -	0.8 -	2.4 3.0	μА
Maximum Operating Voltage (Pin 2)	V _{in(max)}	-	-	10	V
Minimum Operating Voltage (Pin 2) $(T_A = -40^{\circ}\text{C to }85^{\circ}\text{C})$	V _{in(min)}		0.55 0.65	0.70 0.80	V
Reset Output Current (Pin 1, Active Low 'L' Suffix Devices)	I _{OUT}				mA
$ \begin{array}{l} \mbox{N-Channel Sink Current, NCP304, NCP305} \\ \mbox{($V_{OUT} = 0.05 \ V$, $V_{in} = 0.70 \ V$)} \\ \mbox{($V_{OUT} = 0.50 \ V$, $V_{in} = 0.85 \ V$)} \end{array} $		0.01 0.05	0.05 0.50	- -	
P-Channel Source Current, NCP304 $(V_{OUT} = 2.4 \text{ V}, V_{in} = 4.5 \text{ V})$		1.0	2.0	_	
Reset Output Current (Pin 1, Active High 'H' Suffix Devices)	I _{OUT}				mA
N-Channel Sink Current, NCP304, NCP305 ($V_{OUT} = 0.5 \text{ V}, V_{in} = 1.5 \text{ V}$)		1.05	2.5	_	
P-Channel Source Current, NCP304 $(V_{OUT} = 0.4 \text{ V}, V_{in} = 0.7 \text{ V})$ $(V_{OUT} = GND, V_{in} = 0.8 \text{ V})$		0.011 0.014	0.04 0.08	- -	
Propagation Delay Input to Output (Figure 2)					μs

^{4.} In the case of CMOS Output Type: The time interval between the rising edge of V_{DD} input pulse from 0.7 V to $(+V_{DET})$ +2.0 V and output voltage level becoming to $V_{DD}/2$. In the case of N–Channel Open Drain Output Type: Output pin is pulled up with a resistance of 470 k Ω to 5.0 V, the time interval between the rising edge of V_{DD} input pulse from 0.7 V to $(+V_{DET})$ +2.0 V and output voltage level becoming to 2.5 V.

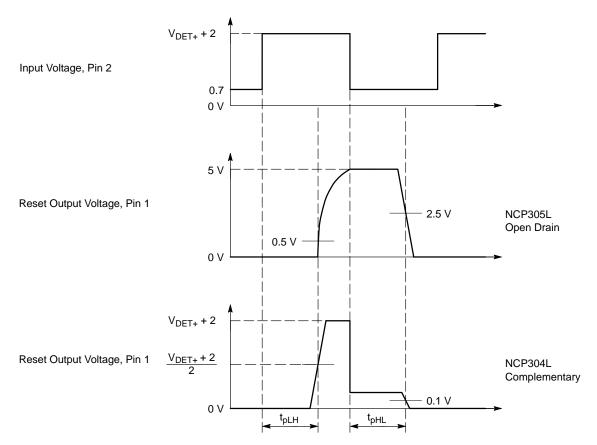
Characteristic	Symbol	Min	Тур	Max	Unit
NCP304/5 - 0.9	•	•	•	•	
Complementary Output NCP304 Series Output Transition, High to Low (Note 4) Output Transition, Low to High (Note 4)	t _{pHL} t _{pLH}	_ _	18 6.0	_ 60	
N-Channel Open Drain NCP305 Series Output Transition, High to Low (Note 4) Output Transition, Low to High (Note 4)	[‡] рНL [‡] рLН	- -	18 -	_ 100	
NCP304/5 - 1.8					
Detector Threshold (Pin 2, V _{in} Decreasing)	V _{DET} _	1.764	1.80	1.836	V
Detector Threshold Hysteresis (Pin 2, V _{in} Increasing)	V _{HYS}	0.054	0.090	0.126	V
Supply Current (Pin 2) $(V_{in} = 1.7 \text{ V})$ $(V_{in} = 3.8 \text{ V})$	l _{in}	- -	0.8 1.0	2.4 3.0	μΑ
Maximum Operating Voltage (Pin 2)	V _{in(max)}	_	-	10	V
Minimum Operating Voltage (Pin 2) $(T_A = -40^{\circ}C \text{ to } 85^{\circ}C)$	V _{in(min)}	- -	0.55 0.65	0.70 0.80	V
Reset Output Current (Pin 1, Active Low 'L' Suffix Devices)	I _{OUT}				mA
N-Channel Sink Current, NCP304, NCP305 (V_{OUT} = 0.05 V, V_{in} = 0.70 V) (V_{OUT} = 0.50 V, V_{in} = 1.5 V)		0.01 1.0	0.05 2.0	- -	
P–Channel Source Current, NCP304 $(V_{OUT} = 2.4 \text{ V}, V_{in} = 4.5 \text{ V})$		1.0	2.0	_	
Reset Output Current (Pin 1, Active High 'H' Suffix Devices)	I _{OUT}				mA
N–Channel Sink Current, NCP304, NCP305 (V_{OUT} = 0.5 V, V_{in} = 5.0 V)		6.3	11	_	
P–Channel Source Current, NCP304 $(V_{OUT} = 0.4 \text{ V}, V_{in} = 0.7 \text{ V})$ $(V_{OUT} = GND, V_{in} = 1.5 \text{ V})$		0.011 0.525	0.04 0.6	_ _	
Propagation Delay Input to Output (Figure 2)					μS
Complementary Output NCP304 Series Output Transition, High to Low (Note 4) Output Transition, Low to High (Note 4)	[‡] рНL [‡] рLН	- -	14 15	_ 60	
N-Channel Open Drain NCP305 Series Output Transition, High to Low (Note 4) Output Transition, Low to High (Note 4)	[‡] рНL [‡] pLН	- -	14 -	_ 100	
NCP304/5 - 2.0					
Detector Threshold (Pin 2, V _{in} Decreasing)	V _{DET} _	1.960	2.00	2.040	V
Detector Threshold Hysteresis (Pin 2, V _{in} Increasing)	V _{HYS}	0.06	0.10	0.14	V
Supply Current (Pin 2) $(V_{in} = 1.9 \text{ V})$ $(V_{in} = 4.0 \text{ V})$	l _{in}	- -	0.9 1.1	2.7 3.3	μΑ
Maximum Operating Voltage (Pin 2)	V _{in(max)}	-	-	10	V
Minimum Operating Voltage (Pin 2) $(T_A = -40^{\circ}\text{C to }85^{\circ}\text{C})$	V _{in(min)}	- -	0.55 0.65	0.70 0.80	V
Reset Output Current (Pin 1, Active Low 'L' Suffix Devices)	I _{OUT}				mA

^{4.} In the case of CMOS Output Type: The time interval between the rising edge of V_{DD} input pulse from 0.7 V to (+V_{DET}) +2.0 V and output voltage level becoming to V_{DD}/2. In the case of N–Channel Open Drain Output Type: Output pin is pulled up with a resistance of 470 kΩ to 5.0 V, the time interval between the rising edge of V_{DD} input pulse from 0.7 V to (+V_{DET}) +2.0 V and output voltage level becoming to 2.5 V.

Characteristic	Symbol	Min	Тур	Max	Unit
NCP304/5 - 2.0		•	•	•	
N-Channel Sink Current, NCP304, NCP305 $(V_{OUT} = 0.05 \text{ V}, V_{in} = 0.70 \text{ V})$ $(V_{OUT} = 0.50 \text{ V}, V_{in} = 1.5 \text{ V})$		0.01 1.0	0.05 2.0		
P-Channel Source Current, NCP304 (V _{OUT} = 2.4 V, V _{in} = 4.5 V)		1.0	2.0	_	
Reset Output Current (Pin 1, Active High 'H' Suffix Devices)	I _{OUT}				mA
N-Channel Sink Current, NCP304, NCP305 (V _{OUT} = 0.5 V, V _{in} = 5.0 V)		6.3	11	_	
P-Channel Source Current, NCP304 $(V_{OUT} = 0.4 \text{ V}, V_{in} = 0.7 \text{ V})$ $(V_{OUT} = GND, V_{in} = 1.5 \text{ V})$		0.011 0.525	0.04 0.6	_ _	
Propagation Delay Input to Output (Figure 2)					μs
Complementary Output NCP304 Series Output Transition, High to Low (Note 4) Output Transition, Low to High (Note 4)	^t pHL ^t pLH	- -	13 15	_ 60	
N-Channel Open Drain NCP305 Series Output Transition, High to Low (Note 4) Output Transition, Low to High (Note 4)	t _p HL t _p LH	- -	13 -	_ 100	
NCP304/5 - 2.7					
Detector Threshold (Pin 2, V _{in} Decreasing)	V _{DET}	2.646	2.700	2.754	V
Detector Threshold Hysteresis (Pin 2, V _{in} Increasing)	V _{HYS}	0.081	0.135	0.189	V
Supply Current (Pin 2) $ (V_{in} = 2.6 \text{ V}) $ $ (V_{in} = 4.7 \text{ V}) $	l _{in}	- -	0.9 1.1	2.7 3.3	μΑ
Maximum Operating Voltage (Pin 2)	V _{in(max)}	<u> </u>	-	10	V
Minimum Operating Voltage (Pin 2) $(T_A = -40$ °C to 85°C)	V _{in(min)}	_ _	0.55 0.65	0.70 0.80	V
Reset Output Current (Pin 1, Active Low 'L' Suffix Devices)	I _{OUT}				mA
N-Channel Sink Current, NCP304, NCP305 $(V_{OUT} = 0.05 \text{ V}, V_{in} = 0.70 \text{ V})$ $(V_{OUT} = 0.50 \text{ V}, V_{in} = 1.5 \text{ V})$		0.01 1.0	0.05 2.0	_ _	
P-Channel Source Current, NCP304 (V _{OUT} = 2.4 V, V _{in} = 4.5 V)		1.0	2.0	_	
Reset Output Current (Pin 1, Active High 'H' Suffix Devices)	I _{OUT}				mA
N-Channel Sink Current, NCP304, NCP305 (V _{OUT} = 0.5 V, V _{in} = 5.0 V)		6.3	11	_	
P-Channel Source Current, NCP304 $(V_{OUT} = 0.4 \text{ V}, V_{in} = 0.7 \text{ V})$ $(V_{OUT} = GND, V_{in} = 1.5 \text{ V})$		0.011 0.525	0.04 0.6	<u>-</u> -	
Propagation Delay Input to Output (Figure 2)					μs
Complementary Output NCP304 Series Output Transition, High to Low (Note 4) Output Transition, Low to High (Note 4)	^t pHL ^t pLH	- -	12 19	_ 60	
N-Channel Open Drain NCP305 Series Output Transition, High to Low (Note 4) Output Transition, Low to High (Note 4)	t _{pHL} t _{pLH}	- -	12 -	_ 100	

^{4.} In the case of CMOS Output Type: The time interval between the rising edge of V_{DD} input pulse from 0.7 V to $(+V_{DET})$ +2.0 V and output voltage level becoming to $V_{DD}/2$. In the case of N–Channel Open Drain Output Type: Output pin is pulled up with a resistance of 470 k Ω to 5.0 V, the time interval between the rising edge of V_{DD} input pulse from 0.7 V to $(+V_{DET})$ +2.0 V and output voltage level becoming to 2.5 V.

Characteristic	Symbol	Min	Тур	Max	Unit
NCP304/5 – 2.9					
Detector Threshold (Pin 2, V _{in} Decreasing)	V _{DET} -	2.842	2.900	2.958	V
Detector Threshold Hysteresis (Pin 2, V _{in} Increasing)	V _{HYS}	0.087	0.145	0.203	V
Supply Current (Pin 2) $(V_{in} = 2.8 \text{ V})$ $(V_{in} = 4.9 \text{ V})$	I _{in}	- -	0.9 1.1	2.9 3.5	μΑ
Maximum Operating Voltage (Pin 2)	V _{in(max)}	_	_	10	V
Minimum Operating Voltage (Pin 2) (T _A = -40°C to 85°C)	V _{in(min)}		0.55 0.65	0.70 0.80	V
Reset Output Current (Pin 1, Active Low 'L' Suffix Devices)	I _{OUT}				mA
N-Channel Sink Current, NCP304, NCP305 $ (V_{OUT}=0.05~V,~V_{in}=0.70~V) \\ (V_{OUT}=0.50~V,~V_{in}=1.5~V) $		0.01 1.0	0.05 2.0	_ _	
P-Channel Source Current, NCP304 $(V_{OUT} = 2.4 \text{ V}, V_{in} = 4.5 \text{ V})$		1.0	2.0	_	
Reset Output Current (Pin 1, Active High 'H' Suffix Devices)	I _{OUT}				mA
N-Channel Sink Current, NCP304, NCP305 $(V_{OUT} = 0.5 \text{ V}, V_{in} = 5.0 \text{ V})$		6.3	11	_	
P-Channel Source Current, NCP304 $(V_{OUT} = 0.4 \text{ V}, V_{in} = 0.7 \text{ V})$ $(V_{OUT} = \text{GND}, V_{in} = 1.5 \text{ V})$		0.011 0.525	0.04 0.6	- -	
Propagation Delay Input to Output (Figure 2)		1			μs
Complementary Output NCP304 Series Output Transition, High to Low (Note 4) Output Transition, Low to High (Note 4)	t _{pHL} t _{pLH}	- -	12 19	_ 60	
N-Channel Open Drain NCP305 Series Output Transition, High to Low (Note 4) Output Transition, Low to High (Note 4)	t _{pHL} t _{pLH}	- -	12 -	_ 100	
NCP304/5 – 3.0	_	•	•	•	
Detector Threshold (Pin 2, V _{in} Decreasing)	V _{DET} _	2.94	3.00	3.06	V
Detector Threshold Hysteresis (Pin 2, V _{in} Increasing)	V _{HYS}	0.09	0.15	0.21	V
Supply Current (Pin 2) (V _{in} = 2.87 V) (V _{in} = 5.0 V)	I _{in}	- -	1.0 1.2	3.0 3.6	μΑ
Maximum Operating Voltage (Pin 2)	V _{in(max)}	<u> </u>	-	10	V
Minimum Operating Voltage (Pin 2) $(T_A = -40^{\circ}\text{C to }85^{\circ}\text{C})$	V _{in(min)}	_ _	0.55 0.65	0.70 0.80	V
Reset Output Current (Pin 1, Active Low 'L' Suffix Devices)	I _{OUT}				mA
N-Channel Sink Current, NCP304, NCP305 $ (V_{OUT} = 0.05 \; V, \; V_{in} = 0.70 \; V) \\ (V_{OUT} = 0.50 \; V, \; V_{in} = 1.5 \; V) $		0.01 1.0	0.05 2.0	- -	
P-Channel Source Current, NCP304 $(V_{OUT} = 2.4 \text{ V}, V_{in} = 4.5 \text{ V})$		1.0	2.0	_	
Reset Output Current (Pin 1, Active High 'H' Suffix Devices)	I _{OUT}				mA
N-Channel Sink Current, NCP304, NCP305 (V _{OUT} = 0.5 V, V _{in} = 5.0 V)		6.3	11	_	


^{4.} In the case of CMOS Output Type: The time interval between the rising edge of V_{DD} input pulse from 0.7 V to $(+V_{DET})$ +2.0 V and output voltage level becoming to $V_{DD}/2$. In the case of N–Channel Open Drain Output Type: Output pin is pulled up with a resistance of 470 k Ω to 5.0 V, the time interval between the rising edge of V_{DD} input pulse from 0.7 V to $(+V_{DET})$ +2.0 V and output voltage level becoming to 2.5 V.

Characteristic	Symbol	Min	Тур	Max	Unit
NCP304/5 - 3.0					
P-Channel Source Current, NCP304					
(V _{OUT} = 0.4 V, V _{in} = 0.7 V) (V _{OUT} = GND, V _{in} = 1.5 V)		0.011 0.525	0.04 0.6	_	
Propagation Delay Input to Output (Figure 2)					μS
Complementary Output NCP304 Series					
Output Transition, High to Low (Note 4)	t _{pHL}	_	12 19	- 60	
Output Transition, Low to High (Note 4)	t _{pLH}		19	00	
N-Channel Open Drain NCP305 Series	tarn		12	_	
Output Transition, High to Low (Note 4) Output Transition, Low to High (Note 4)	t _{pHL} t _{pLH}	_	-	100	
NCP304/5 – 4.5			<u> </u>	<u> </u>	
Detector Threshold (Pin 2, V _{in} Decreasing)	V _{DET} _	4.410	4.500	4.590	V
Detector Threshold Hysteresis (Pin 2, V _{in} Increasing)	V _{HYS}	0.135	0.225	0.315	V
Supply Current (Pin 2)	I _{in}				μΑ
$(V_{in} = 4.34 \text{ V})$		-	-	3.0	
$(V_{in} = 6.5 \text{ V})$		-	-	3.9	.,
Maximum Operating Voltage (Pin 2)	V _{in(max)}	-	_	10	V
Minimum Operating Voltage (Pin 2) $(T_A = -40^{\circ}\text{C to }85^{\circ}\text{C})$	V _{in(min)}		0.55 0.65	0.70 0.80	V
Reset Output Current (Pin 1, Active Low 'L' Suffix Devices)	l _{OUT}				mA
N-Channel Sink Current, NCP304, NCP305					
$(V_{OUT} = 0.05 \text{ V}, V_{in} = 0.70 \text{ V})$		0.01	0.05	_	
$(V_{OUT} = 0.50 \text{ V}, V_{in} = 1.5 \text{ V})$		1.0	2.0	_	
P-Channel Source Current, NCP304 (V _{OUT} = 5.9 V, V _{in} = 8.0 V)		1.5	3.0	_	
Reset Output Current (Pin 1, Active High 'H' Suffix Devices)	l _{OUT}				mA
N-Channel Sink Current, NCP304, NCP305					
$(V_{OUT} = 0.5 \text{ V}, V_{in} = 5.0 \text{ V})$		6.3	11	_	
P-Channel Source Current, NCP304					
$(V_{OUT} = 0.4 \text{ V}, V_{in} = 0.7 \text{ V})$		0.011	0.04	_	
(V _{OUT} = GND, V _{in} = 1.5 V)		0.525	0.6	_	
Propagation Delay Input to Output (Figure 2)					μS
Complementary Output NCP304 Series Output Transition, High to Low (Note 4)	t		10		
Output Transition, Fight to Low (Note 4) Output Transition, Low to High (Note 4)	t _{pHL} t _{pLH}	_	21	60	
N-Channel Open Drain NCP305 Series	γ=				
Output Transition, High to Low (Note 4)	t _{pHL}	_	10	_	
Output Transition, Low to High (Note 4)	t _{pLH}	_	-	100	
NCP304/5 – 4.7			_		
Detector Threshold (Pin 2, V _{in} Decreasing)	V_{DET-}	4.606	4.70	4.794	V
Detector Threshold Hysteresis (Pin 2, V _{in} Increasing)	V _{HYS}	0.141	0.235	0.329	V
Supply Current (Pin 2)	l _{in}				μΑ
$(V_{in} = 4.54 \text{ V})$ $(V_{in} = 6.7 \text{ V})$		_	1.1 1.3	3.0 3.9	
		_			
Maximum Operating Voltage (Pin 2)	$V_{in(max)}$	_	_	10	V

^{4.} In the case of CMOS Output Type: The time interval between the rising edge of V_{DD} input pulse from 0.7 V to $(+V_{DET})$ +2.0 V and output voltage level becoming to $V_{DD}/2$. In the case of N–Channel Open Drain Output Type: Output pin is pulled up with a resistance of 470 k Ω to 5.0 V, the time interval between the rising edge of V_{DD} input pulse from 0.7 V to $(+V_{DET})$ +2.0 V and output voltage level becoming to 2.5 V.

Characteristic	Symbol	Min	Тур	Max	Unit
NCP304/5 – 4.7	•	•		•	
Minimum Operating Voltage (Pin 2) $(T_A = -40^{\circ}\text{C to }85^{\circ}\text{C})$	V _{in(min)}	-	0.55 0.65	0.70 0.80	V
Reset Output Current (Pin 1, Active Low 'L' Suffix Devices)	I _{OUT}				mA
$ \begin{array}{l} \mbox{N-Channel Sink Current, NCP304, NCP305} \\ \mbox{($V_{OUT} = 0.05 \ V$, $V_{in} = 0.70 \ V$)} \\ \mbox{($V_{OUT} = 0.50 \ V$, $V_{in} = 1.5 \ V$)} \end{array} $		0.01 1.0	0.05 2.0	- -	
P-Channel Source Current, NCP304 $(V_{OUT} = 5.9 \text{ V}, V_{in} = 8.0 \text{ V})$		1.5	3.0	_	
Reset Output Current (Pin 1, Active High 'H' Suffix Devices)	I _{OUT}				mA
N-Channel Sink Current, NCP304, NCP305 $(V_{OUT} = 0.5 \text{ V}, V_{in} = 5.0 \text{ V})$		6.3	11	_	
P-Channel Source Current, NCP304 $(V_{OUT} = 0.4 \text{ V}, V_{in} = 0.7 \text{ V})$ $(V_{OUT} = GND, V_{in} = 1.5 \text{ V})$		0.011 0.525	0.04 0.6	- -	
Propagation Delay Input to Output (Figure 2)					μs
Complementary Output NCP304 Series Output Transition, High to Low (Note 4) Output Transition, Low to High (Note 4)	t _{pHL} t _{pLH}	- -	10 21	- 60	
N-Channel Open Drain NCP305 Series Output Transition, High to Low (Note 4) Output Transition, Low to High (Note 4)	t _{pHL} t _{pLH}	- -	10 -	_ 100	

^{4.} In the case of CMOS Output Type: The time interval between the rising edge of V_{DD} input pulse from 0.7 V to $(+V_{DET})$ +2.0 V and output voltage level becoming to $V_{DD}/2$. In the case of N–Channel Open Drain Output Type: Output pin is pulled up with a resistance of 470 k Ω to 5.0 V, the time interval between the rising edge of V_{DD} input pulse from 0.7 V to $(+V_{DET})$ +2.0 V and output voltage level becoming to 2.5 V.

NCP304 and NCP305 series are measured with a 10 pF capacitive load. NCP305 has an additional 470 k pullup resistor connected from the reset output to +5.0 V. The reset output voltage waveforms are shown for the active low 'L' devices. The upper detector threshold, V_{DET-} is the sum of the lower detector threshold, V_{DET-} plus the input hysteresis, V_{HYS} .

Figure 2. Propagation Delay Measurement Conditions

Table 1. NCP304 SERIES ELECTRICAL CHARACTERISTIC TABLE FOR 0.9 - 4.9 V

				Detec	tor Thre	shold	Supply	Current	N-Chl Sin	k Current	P-Channel Source
	Detec	tor Thre	shold		ysteres		V _{in} Low	V _{in} High	V _{in} Low	V _{in} High	Current
	\	/ _{DET-} (V)		V _{HYS} (V))	I _{in} (μΑ) (Note 5)	l _{in} (μΑ) (Note 6)	I _{OUT} (mA) (Note 7)	I _{OUT} (mA) (Note 8)	I _{OUT} (mA) (Note 9)
Part Number	Min	Тур	Max	Min	Тур	Max	Тур	Тур	Тур	Тур	Тур
NCP304LSQ09T1	0.882	0.9	0.918	0.027	0.045	0.063	0.8	0.9	0.05	0.5	2.0
NCP304LSQ15T1	1.470	1.5	1.530	0.045	0.075	0.105					
NCP304LSQ18T1	1.764	1.8	1.836	0.054	0.090	0.126					
NCP304LSQ20T1	1.960	2.0	2.040	0.060	0.100	0.140	0.9	1.1			
NCP304LSQ23T1	2.254	2.3	2.346	0.069	0.115	0.161					
NCP304LSQ25T1	2.450	2.5	2.550	0.075	0.125	0.175					
NCP304LSQ27T1	2.646	2.7	2.754	0.081	0.135	0.189					
NCP304LSQ28T1	2.744	2.8	2.856	0.084	0.140	0.196					
NCP304LSQ29T1	2.842	2.9	2.958	0.087	0.145	0.203					
NCP304LSQ30T1	2.940	3.0	3.060	0.090	0.150	0.210	1.0	1.2			
NCP304LSQ31T1	3.038	3.1	3.162	0.093	0.155	0.217					
NCP304LSQ33T1	3.234	3.3	3.366	0.099	0.165	0.231					
NCP304LSQ37T1	3.626	3.7	3.774	0.111	0.185	0.259					
NCP304LSQ38T1	3.724	3.8	3.876	0.114	0.190	0.266					
NCP304LSQ40T1	3.920	4.0	4.080	0.120	0.200	0.280	1.1	1.3			3.0
NCP304LSQ42T1	4.116	4.2	4.284	0.126	0.210	0.294					
NCP304LSQ43T1	4.214	4.3	4.386	0.129	0.215	0.301					
NCP304LSQ45T1	4.410	4.5	4.590	0.135	0.225	0.315					
NCP304LSQ46T1	4.508	4.6	4.692	0.138	0.230	0.322					
NCP304LSQ47T1	4.606	4.7	4.794	0.141	0.235	0.329					

Table 2. NCP304 SERIES ELECTRICAL CHARACTERISTIC TABLE FOR 0.9 - 4.9 V

				Detec	Detector Threshold			Current	N-Channel Sink	P-Channel Source Current	
	Detec	tor Thre	shold	Н	ysteresi	s	V _{in} Low	V _{in} High	Current	V _{in} Low	V _{in} High
	١	/ _{DET-} (V)	,	V _{HYS} (V)	ı	I _{in} (μΑ) (Note 10)	l _{in} (μΑ) (Note 11)	I _{OUT} (mA) (Note 12)	I _{OUT} (mA) (Note 13)	I _{OUT} (mA) (Note 14)
Part Number	Min	Тур	Max	Min	Тур	Max	Тур	Тур	Тур	Тур	Тур
NCP304HSQ09T1	0.882	0.9	0.918	0.027	0.045	0.063	0.8	0.9	2.5	0.04	0.08
NCP304HSQ18T1	1.764	1.8	1.836	0.054	0.090	0.126					
NCP304HSQ20T1	1.960	2.0	2.040	0.060	0.100	0.140	0.9	1.1			
NCP304HSQ22T1	2.156	2.2	2.244	0.066	0.110	0.154					
NCP304HSQ27T1	2.646	2.7	2.754	0.081	0.135	0.189					
NCP304HSQ29T1	2.842	2.9	2.958	0.087	0.145	0.203					
NCP304HSQ30T1	2.940	3.0	3.060	0.090	0.150	0.210	1.0	1.2			
NCP304HSQ45T1	4.410	4.5	4.590	0.135	0.225	0.315					
NCP304HSQ47T1	4.606	4.7	4.794	0.141	0.235	0.329					

^{5.} Condition 1: 0.9 – 2.9 V, V_{in} = V_{DET} – 0.10 V; 3.0 – 3.9 V, V_{in} = V_{DET} – 0.13 V; 4.0 – 4.9 V, V_{in} = V_{DET} – 0.16 V 6. Condition 2: 0.9 – 4.9 V, V_{in} = V_{DET} + 2.0 V 7. Condition 3: 0.9 – 4.9 V, V_{in} = 0.7 V, V_{OUT} = 0.05 V, Active Low 'L' Suffix Devices 8. Condition 4: 0.9 – 1.0 V, V_{in} = 0.85 V, V_{OUT} = 0.5 V; 1.1 – 1.5 V, V_{in} = 1.0 V, V_{OUT} = 0.5 V; 1.6 – 4.9 V, V_{in} = 1.5 V, V_{OUT} = 0.5 V, Active Low 'L' Suffix Devices

^{9.} Condition 5: 0.9 - 3.9 V, $V_{\text{in}} = 4.5 \text{ V}$, $V_{\text{OUT}} = 2.4 \text{ V}$; 4.0 - 4.9 V, $V_{\text{in}} = 8.0 \text{ V}$, $V_{\text{OUT}} = 5.9 \text{ V}$, Active Low 'L' Suffix Devices

^{10.} Condition 1: 0.9 - 2.9 V, $V_{\text{in}} = V_{\text{DET}} - 0.10 \text{ V}$; 3.0 - 3.9 V, $V_{\text{in}} = V_{\text{DET}} - 0.13 \text{ V}$; 4.0 - 4.9 V, $V_{\text{in}} = V_{\text{DET}} - 0.16 \text{ V}$ 11. Condition 2: 0.9 - 4.9 V, $V_{\text{in}} = V_{\text{DET}} + 2.0 \text{ V}$ 12. Condition 3: 0.9 - 1.4 V, $V_{\text{in}} = 1.5 \text{ V}$, $V_{\text{OUT}} = 0.5 \text{ V}$; 1.5 - 4.9 V, $V_{\text{in}} = 5.0 \text{ V}$, $V_{\text{OUT}} = 0.5 \text{ V}$, Active High 'H' Suffix Devices
13. Condition 4: 0.9 - 4.9 V, $V_{\text{in}} = 0.7 \text{ V}$, $V_{\text{OUT}} = 0.4 \text{ V}$, Active High 'H' Suffix Devices
14. Condition 5: 0.9 - 1.0 V, $V_{\text{in}} = 0.8 \text{ V}$, $V_{\text{OUT}} = \text{GND}$; 1.1 - 1.5 V, $V_{\text{in}} = 1.0 \text{ V}$, $V_{\text{OUT}} = \text{GND}$; 1.6 - 4.9 V, $V_{\text{in}} = 1.5 \text{ V}$, $V_{\text{OUT}} = \text{GND}$, Active High 'H' Suffix Devices Active High 'H' Suffix Devices

Table 3. NCP305 SERIES ELECTRICAL CHARACTERISTIC TABLE FOR 0.9 - 4.9 V

		_	_	Detec	tor Thre	shold	Supply	Current		annel Gurrent
	Detec	Detector Threshold			Hysteresis V _{in} Low V _{in} High		V _{in} Low	V _{in} High		
	,	V _{DET} _ (V)					l _{in} (μΑ) (Note 16)	I _{OUT} (mA) (Note 17)	I _{OUT} (mA) (Note 18)	
Part Number	Min	Тур	Max	Min	Тур	Max	Тур	Тур	Тур	Тур
NCP305LSQ09T1	0.882	0.9	0.918	0.027	0.045	0.063	0.8	0.9	0.05	0.5
NCP305LSQ15T1	1.470	1.5	1.530	0.045	0.075	0.105				
NCP305LSQ16T1	1.568	1.6	1.632	0.048	0.080	0.112				2.0
NCP305LSQ17T1	1.666	1.7	1.734	0.051	0.085	0.119				
NCP305LSQ18T1	1.764	1.8	1.836	0.054	0.090	0.126				
NCP305LSQ20T1	1.960	2.0	2.040	0.060	0.100	0.140	0.9	1.1	1	
NCP305LSQ22T1	2.156	2.2	2.244	0.066	0.110	0.154				
NCP305LSQ23T1	2.254	2.3	2.346	0.069	0.115	0.161				
NCP305LSQ24T1	2.352	2.4	2.448	0.072	0.120	0.168				
NCP305LSQ25T1	2.450	2.5	2.550	0.075	0.125	0.175				
NCP305LSQ26T1	2.548	2.6	2.652	0.078	0.130	0.182				
NCP305LSQ27T1	2.646	2.7	2.754	0.081	0.135	0.189				
NCP305LSQ28T1	2.744	2.8	2.856	0.084	0.140	0.196				
NCP305LSQ29T1	2.842	2.9	2.958	0.087	0.145	0.203				
NCP305LSQ30T1	2.940	3.0	3.060	0.090	0.150	0.210	1.0	1.2	1	
NCP305LSQ31T1	3.038	3.1	3.162	0.093	0.155	0.217				
NCP305LSQ32T1	3.136	3.2	3.264	0.096	0.160	0.224				
NCP305LSQ33T1	3.234	3.3	3.366	0.099	0.165	0.231				
NCP305LSQ34T1	3.332	3.4	3.468	0.102	0.170	0.238				
NCP305LSQ35T1	3.430	3.5	3.570	0.105	0.175	0.245				
NCP305LSQ36T1	3.528	3.6	3.672	0.108	0.180	0.252				
NCP305LSQ37T1	3.626	3.7	3.774	0.111	0.185	0.259				
NCP305LSQ40T1	3.920	4.0	4.080	0.120	0.200	0.280	1.1	1.3		
NCP305LSQ44T1	4.312	4.4	4.488	0.132	0.220	0.308				
NCP305LSQ45T1	4.410	4.5	4.590	0.135	0.225	0.315				
NCP305LSQ47T1	4.606	4.7	4.794	0.141	0.235	0.329				
NCP305LSQ49T1	4.802	4.9	4.998	0.147	0.245	0.343				

^{15.} Condition 1: 0.9 – 2.9 V, V_{in} = V_{DET} – 0.10 V; 3.0 – 3.9 V, V_{in} = V_{DET} – 0.13 V; 4.0 – 4.9 V, V_{in} = V_{DET} – 0.16 V 16. Condition 2: 0.9 – 4.9 V, V_{in} = V_{DET} + 2.0 V 17. Condition 3: 0.9 – 4.9 V, V_{in} = 0.7 V, V_{OUT} = 0.05 V, Active Low 'L' Suffix Devices 18. Condition 4: 0.9 – 1.0 V, V_{in} = 0.85 V, V_{OUT} = 0.5 V; 1.1 – 1.5 V, V_{in} = 1.0 V, V_{OUT} = 0.5 V; 1.6 – 4.9 V, V_{in} = 1.5 V, V_{OUT} = 0.5 V, Active Low 'L' Suffix Devices

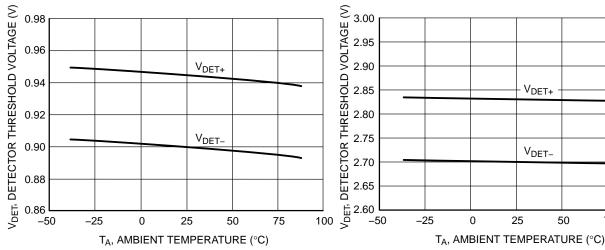


Figure 3. NCP304/5 Series 0.9 V
Detector Threshold Voltage vs. Temperature

Figure 4. NCP304/5 Series 2.7 V
Detector Threshold Voltage vs. Temperature

75

100

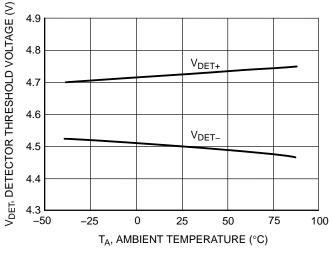


Figure 5. NCP304/5 Series 4.5 V
Detector Threshold Voltage vs. Temperature

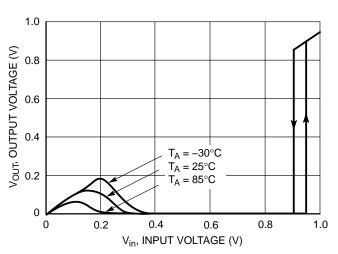


Figure 6. NCP304L/5L Series 0.9 V Reset Output Voltage vs. Input Voltage

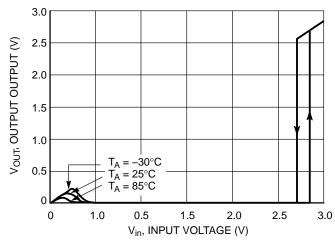


Figure 7. NCP304L/5L Series 2.7 V Reset Output Voltage vs. Input Voltage

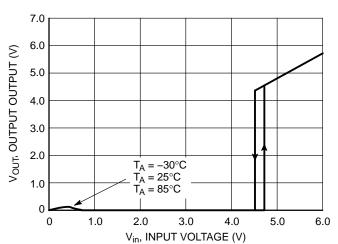


Figure 8. NCP304L/5L Series 4.5 V Reset Output Voltage vs. Input Voltage

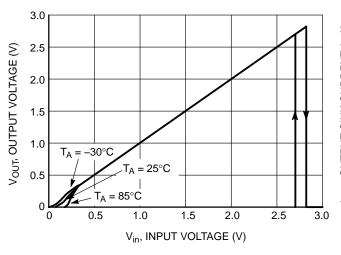


Figure 9. NCP304H/5H Series 2.7 V Reset Output Voltage vs. Input Voltage

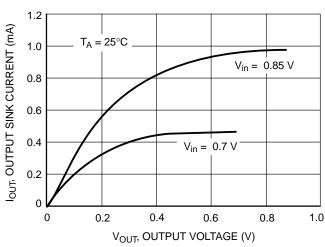


Figure 10. NCP304H/5L Series 0.9 V Reset Output Sink Current vs. Output Voltage

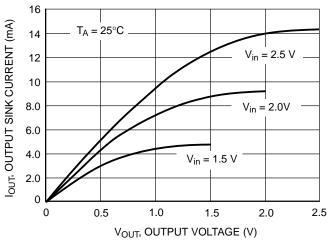


Figure 11. NCP304H/5L Series 2.7 V Reset Output Sink Current vs. Output Voltage

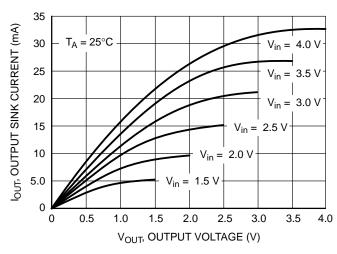


Figure 12. NCP304H/5L Series 4.5 V Reset Output Sink Current vs. Output Voltage

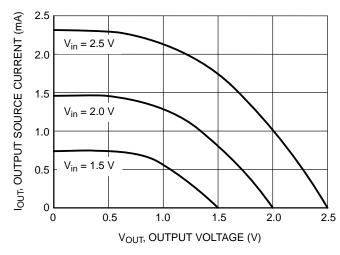


Figure 13. NCP304H Series 2.7 V Reset Output Source Current vs. Output Voltage

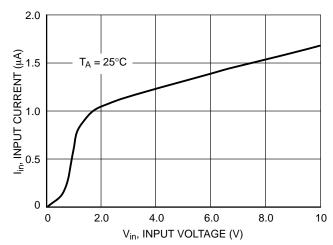


Figure 14. NCP304/5 Series 0.9 V Input Current vs. Input Voltage

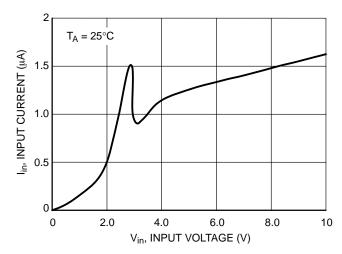


Figure 15. NCP304/5 Series 2.7 V Input Current vs. Input Voltage

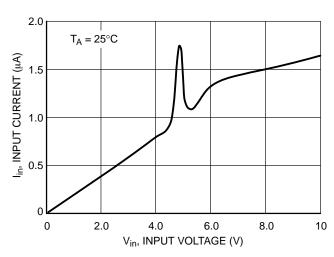


Figure 16. NCP304/5 Series 4.5 V Input Current vs. Input Voltage

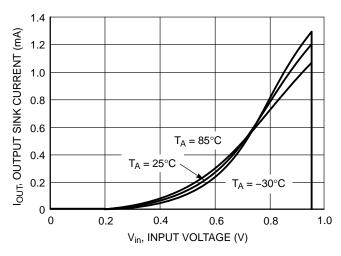


Figure 17. NCP304H/5L Series 0.9 V Reset Output Sink Current vs. Input Voltage

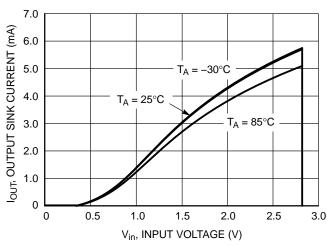


Figure 18. NCP304H/5L Series 2.7 V Reset Output Sink Current vs. Input Voltage

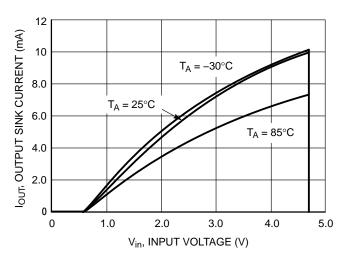


Figure 19. NCP304H/5L Series 4.5 V Reset Output Sink Current vs. Input Voltage

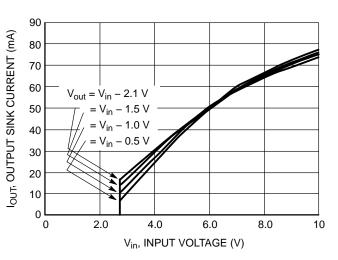


Figure 20. NCP304H/5H Series 2.7 V Reset Output Sink Current vs. Input Voltage

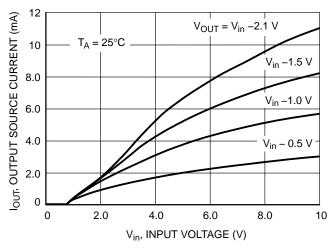


Figure 21. NCP304H Series 0.9 V Reset Output Source Current vs. Input Voltage

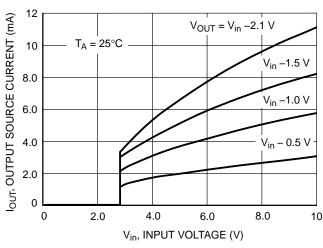


Figure 22. NCP304H Series 2.7 V Reset Output Source Current vs. Input Voltage

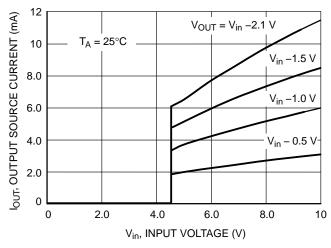


Figure 23. NCP304H Series 4.5 V Reset Output Source Current vs. Input Voltage

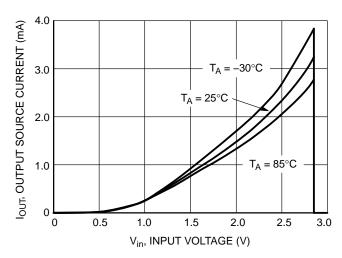


Figure 24. NCP304H Series 2.7 V Reset Output Source Current vs. Input Voltage

OPERATING DESCRIPTION

The NCP304 and NCP305 series devices are second generation ultra–low current voltage detectors. Figures 25 and 26 show a timing diagram and a typical application. Initially consider that input voltage V_{in} is at a nominal level and it is greater than the voltage detector upper threshold (V_{DET+}) , and the reset output (Pin 1) will be in the high state for active low devices, or in the low state for active high devices. If there is a power interruption and V_{in} becomes significantly deficient, it will fall below the lower detector threshold (V_{DET-}) . This sequence of events causes the Reset output to be in the low state for active low devices, or in the

high state for active high devices. After completion of the power interruption, V_{in} will again return to its nominal level and become greater than the V_{DET+} . The voltage detector has built—in hysteresis to prevent erratic reset operation as the comparator threshold is crossed.

Although these device series are specifically designed for use as reset controllers in portable microprocessor based systems, they offer a cost–effective solution in numerous applications where precise voltage monitoring is required. Figure 26 through Figure 32 shows various application examples.

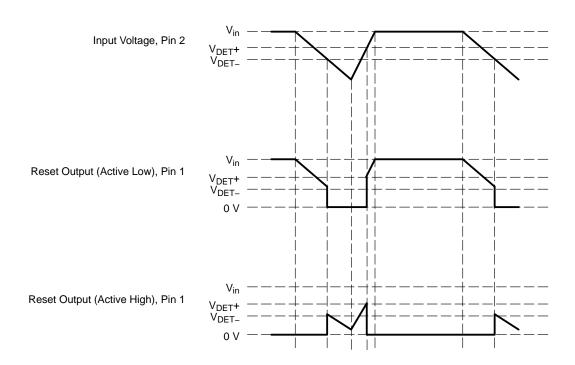


Figure 25. Timing Waveforms

APPLICATION CIRCUIT INFORMATION

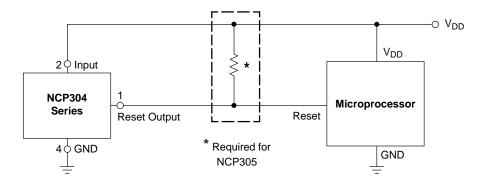


Figure 26. Microprocessor Reset Circuit

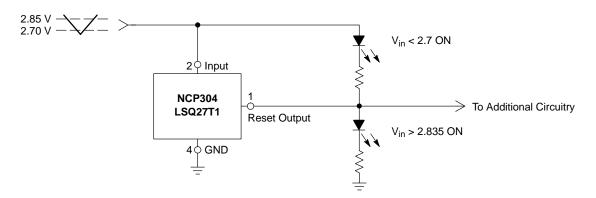


Figure 27. Battery Charge Indicator

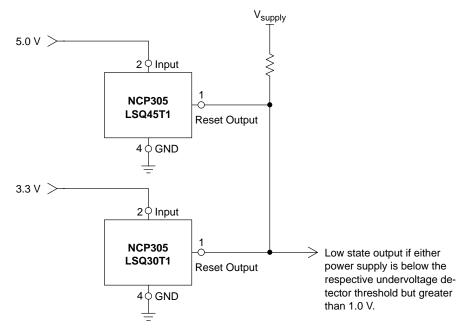


Figure 28. Dual Power Supply Undervoltage Supervision

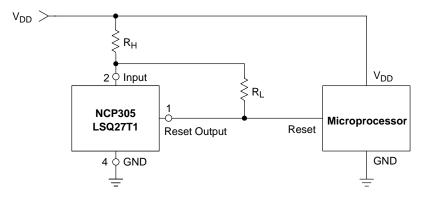
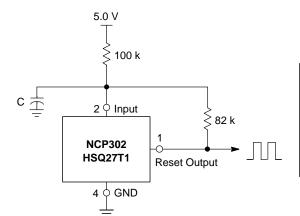


Figure 29. Microprocessor Reset Circuit with Additional Hysteresis

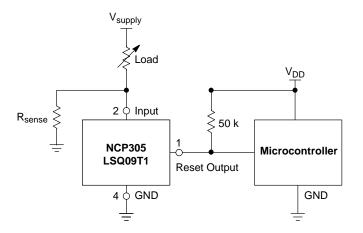
Comparator hysteresis can be increased with the addition of resistor $R_H.$ The hysteresis equations have been simplified and do not account for the change of input current I_{in} as V_{in} crosses the comparator threshold. The internal resistance, R_{in} is simply calculated using I_{in} = 0.26 μA at 2.6 V.

Vin Decreasing:


$$V_{th} = \left(\frac{R_H}{R_{in}} + 1\right) \left(V_{DET-}\right)$$

Vin Increasing:

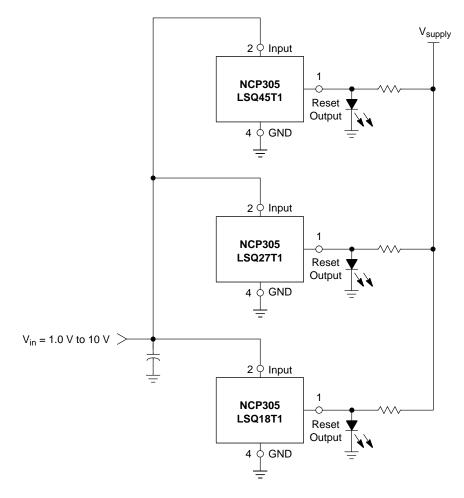
$$V_{th} = \left(\frac{R_H}{R_{in} \parallel R_L} + 1\right) \left(V_{DET-} + V_{HYS}\right)$$


 $V_{HYS} = V_{in}$ Increasing $-V_{in}$ Decreasing

Test Data								
V _{th} Decreasing (mV)	V _{th} Increasing (mV)	V _{HYS} (mV)	R _H (Ω)	R _L (kΩ)				
2.70	2.84	0.135	0	_				
2.70	2.87	0.17	100	10				
2.70	2.88	0.19	100	6.8				
2.70	2.91	0.21	100	4.3				
2.70	2.90	0.20	220	10				
2.70	2.94	0.24	220	6.8				
2.70	2.98	0.28	220	4.3				
2.70	2.70	0.27	470	10				
2.70	3.04	0.34	470	6.8				
2.70	3.15	0.35	470	4.3				

Test Data								
C (µF)	f _{OSC} (kHz)	I _Q (μA)						
0.01	2590	21.77						
0.1	490	21.97						
1.0	52	22.07						

Figure 30. Simple Clock Oscillator



This circuit monitors the current at the load. As current flows through the load, a voltage drop with respect to ground appears across $\boldsymbol{R}_{\text{sense}}$ where $V_{sense} = I_{load} * R_{sense}$. The following conditions apply:

Reset Output = 0 V

$$\begin{split} I_{Load} &< V_{DET-}/R_{sense} \\ I_{Load} &\geq (V_{DET-}\!+\!V_{HYS})/R_{sense} \end{split}$$
Reset Output = V_{DD}

Figure 31. Microcontroller Systems Load Sensing

A simple voltage monitor can be constructed by connecting several voltage detectors as shown above. Each LED will sequentially turn on when the respective voltage detector threshold (V_{DET} + V_{HYS}) is exceeded. Note that detector thresholds (V_{DET-}) that range from 0.9 V to 4.9 V in 100 mV steps can be manufactured.

Figure 32. LED Bar Graph

ORDERING INFORMATION

Device	Threshold Voltage	Output Type	Reset	Marking	Package	Shipping [†]
NCP304LSQ09T1	0.9			SHG	SC-82AB	
NCP304LSQ09T1G	0.9			SHG	SC-82AB (Pb-Free)	
NCP304LSQ18T1	1.8			SGX	SC-82AB	
NCP304LSQ18T1G	1.8			SGX	SC-82AB (Pb-Free)	
NCP304LSQ20T1	2.0			SGV	SC-82AB	
NCP304LSQ20T1G	2.0			SGV	SC-82AB (Pb-Free)	
NCP304LSQ23T1	2.3			SGR	SC-82AB	
NCP304LSQ23T1G	2.3			SGR	SC-82AB (Pb-Free)	
NCP304LSQ25T1	2.5			SGP	SC-82AB	
NCP304LSQ25T1G	2.5			SGP	SC-82AB (Pb-Free)	
NCP304LSQ27T1	2.7			SGN	SC-82AB	
NCP304LSQ27T1G	2.7			SGN	SC-82AB (Pb-Free)	
NCP304LSQ280T1G	2.8			CAT	SC-82AB (Pb-Free)	
NCP304LSQ29T1	2.9			SGK	SC-82AB	
NCP304LSQ29T1G	2.9	CMOS	Active Low	SGK	SC-82AB (Pb-Free)	3000 / Tape & Reel
NCP304LSQ30T1	3.0			SGJ	SC-82AB	
NCP304LSQ30T1G	3.0			SGJ	SC-82AB (Pb-Free)	
NCP304LSQ310T1G	3.1			CAR	SC-82AB (Pb-Free)	
NCP304LSQ33T1	3.3			SGG	SC-82AB	
NCP304LSQ33T1G	3.3			SGG	SC-82AB (Pb-Free)	
NCP304LSQ37T1	3.7			SGB	SC-82AB	
NCP304LSQ37T1G	3.7			SGB	SC-82AB (Pb-Free)	
NCP304LSQ38T1	3.8			SGA	SC-82AB	
NCP304LSQ38T1G	3.8			SGA	SC-82AB (Pb-Free)	
NCP304LSQ40T1	4.0			SFY	SC-82AB	
NCP304LSQ40T1G	4.0			SFY	SC-82AB (Pb-Free)	
NCP304LSQ42T1	4.2			SFU	SC-82AB	
NCP304LSQ42T1G	4.2			SFU	SC-82AB (Pb-Free)	
NCP304LSQ43T1	4.3			SFV	SC-82AB	

NOTE: The ordering information lists standard undervoltage thresholds with active low outputs. Additional active low threshold devices, ranging from 0.9 V to 4.9 V in 100 mV increments and NCP304 active high output devices, ranging from 0.9 V to 4.9 V in 100 mV increments can be manufactured. Contact your ON Semiconductor representative for availability. The electrical characteristics of these additional devices are shown in Tables 1 and 2.

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ORDERING INFORMATION

Device	Threshold Voltage	Output Type	Reset	Marking	Package	Shipping †
NCP304LSQ43T1G	4.3			SFV	SC-82AB (Pb-Free)	
NCP304LSQ45T1	4.5			SFS	SC-82AB	
NCP304LSQ45T1G	4.5]		SFS	SC-82AB (Pb-Free)	
NCP304LSQ46T1	4.6	CMOS	Active Low	SFR	SC-82AB (Pb-Free)	3000 / Tape & Reel
NCP304LSQ46T1G	4.6			SFR	SC-82AB (Pb-Free)	
NCP304LSQ47T1	4.7			SFQ	SC-82AB	
NCP304LSQ47T1G	4.7			SFQ	SC-82AB (Pb-Free)	
NCP304HSQ09T1	0.9			SNQ	SC-82AB	
NCP304HSQ09T1G	0.9			SNQ	SC-82AB (Pb-Free)	
NCP304HSQ18T1	1.8			SNZ	SC-82AB	
NCP304HSQ18T1G	1.8			SNZ	SC-82AB (Pb-Free)	
NCP304HSQ20T1	2.0]		SOB	SC-82AB	
NCP304HSQ20T1G	2.0			SOB	SC-82AB (Pb-Free)	
NCP304HSQ22T1	2.2]		SOD	SC-82AB	
NCP304HSQ22T1G	2.2			SOD	SC-82AB (Pb-Free)	
NCP304HSQ27T1	2.7]	Active	SOI	SC-82AB	
NCP304HSQ27T1G	2.7	CMOS	High	SOI	SC-82AB (Pb-Free)	3000 / Tape & Reel
NCP304HSQ29T1	2.9]		SOK	SC-82AB	
NCP304HSQ29T1G	2.9			SOK	SC-82AB (Pb-Free)	
NCP304HSQ30T1	3.0			SOL	SC-82AB	
NCP304HSQ30T1G	3.0			SOL	SC-82AB (Pb-Free)	
NCP304HSQ45T1	4.5			SPA	SC-82AB	
NCP304HSQ45T1G	4.5			SPA	SC-82AB (Pb-Free)	
NCP304HSQ47T1	4.7			SPC	SC-82AB	
NCP304HSQ47T1G	4.7			SPC	SC-82AB (Pb-Free)	
NCP305LSQ09T1	0.9			SIZ	SC-82AB	
NCP305LSQ09T1G	0.9			SIZ	SC-82AB (Pb-Free)	
NCP305LSQ11T1	1.1			SIX	SC-82AB	
NCP305LSQ11T1G	1.1			SIX	SC-82AB (Pb-Free)	

NOTE: The ordering information lists standard undervoltage thresholds with active low outputs. Additional active low threshold devices, ranging from 0.9 V to 4.9 V in 100 mV increments and NCP304 active high output devices, ranging from 0.9 V to 4.9 V in 100 mV increments can be manufactured. Contact your ON Semiconductor representative for availability. The electrical characteristics of these additional devices are shown in Tables 1 and 2.

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ORDERING INFORMATION

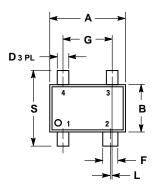
Device	Threshold Voltage	Output Type	Reset	Marking	Package	Shipping [†]	
NCP305LSQ15T1	1.5			SIS	SC-82AB		
NCP305LSQ15T1G	1.5			SIS	SC-82AB (Pb-Free)		
NCP305LSQ16T1	1.6	1		SIR	SC-82AB		
NCP305LSQ16T1G	1.6			SIR	SC-82AB (Pb-Free)		
NCP305LSQ17T1	1.7			SIQ	SC-82AB		
NCP305LSQ17T1G	1.7			SIQ	SC-82AB (Pb-Free)		
NCP305LSQ18T1	1.8	1			SIP	SC-82AB	
NCP305LSQ18T1G	1.8			SIP	SC-82AB (Pb-Free)		
NCP305LSQ20T1	2.0	1		SIN	SC-82AB		
NCP305LSQ20T1G	2.0			SIN	SC-82AB (Pb-Free)		
NCP305LSQ22T1	2.2			SIK	SC-82AB		
NCP305LSQ22T1G	2.2	Open Drain	Active Low	SIK	SC-82AB (Pb-Free)	3000 / Tape & Reel	
NCP305LSQ23T1	2.3	1		SIJ	SC-82AB		
NCP305LSQ23T1G	2.3			SIJ	SC-82AB (Pb-Free)		
NCP305LSQ24T1	2.4	1		SII	SC-82AB		
NCP305LSQ24T1G	2.4			SII	SC-82AB (Pb-Free)		
NCP305LSQ25T1	2.5			SIH	SC-82AB		
NCP305LSQ25T1G	2.5			SIH	SC-82AB (Pb-Free)		
NCP305LSQ26T1G	2.6			SIG	SC-82AB (Pb-Free)		
NCP305LSQ27T1	2.7	1		SIF	SC-82AB		
NCP305LSQ27T1G	2.7			SIF	SC-82AB (Pb-Free)		
NCP305LSQ28T1	2.8	1		SIE	SC-82AB		
NCP305LSQ28T1G	2.8			SIE	SC-82AB (Pb-Free)		
NCP305LSQ29T1	2.9			SID	SC-82AB		
NCP305LSQ29T1G	2.9			SID	SC-82AB (Pb-Free)		
NCP305LSQ30T1	3.0			SIC	SC-82AB		
NCP305LSQ30T1G	3.0			SIC	SC-82AB (Pb-Free)		

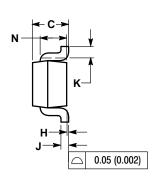
NOTE: The ordering information lists standard undervoltage thresholds with active low outputs. Additional active low threshold devices, ranging from 0.9 V to 4.9 V in 100 mV increments and NCP304 active high output devices, ranging from 0.9 V to 4.9 V in 100 mV increments can be manufactured. Contact your ON Semiconductor representative for availability. The electrical characteristics of these additional devices are shown in Tables 1 and 2.

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ORDERING INFORMATION

Device	Threshold Voltage	Output Type	Reset	Marking	Package	Shipping [†]						
NCP305LSQ30T3	3.0	Open Drain	Active Low	SIC	SC-82AB							
NCP305LSQ30T3G	3.0			SIC	SC-82AB (Pb-Free)	10,000 / Tape & Reel						
NCP305LSQ31T1	3.1			SIB	SC-82AB							
NCP305LSQ31T1G	3.1			SIB	SC-82AB (Pb-Free)							
NCP305LSQ32T1	3.2			SIA	SC-82AB							
NCP305LSQ32T1G	3.2			SIA	SC-82AB (Pb-Free)							
NCP305LSQ33T1	3.3			SHZ	SC-82AB							
NCP305LSQ33T1G	3.3			SHZ	SC-82AB (Pb-Free)							
NCP305LSQ34T1	3.4			SHY	SC-82AB							
NCP305LSQ34T1G	3.4		Active	SHY	SC-82AB (Pb-Free)							
NCP305LSQ35T1	3.5			SHX	SC-82AB							
NCP305LSQ35T1G	3.5	Open Drain		SHX	SC-82AB (Pb-Free)							
NCP305LSQ36T1	3.6			SHU	SC-82AB							
NCP305LSQ36T1G	3.6			SHU	SC-82AB (Pb-Free)							
NCP305LSQ37T1	3.7							Low		SHV	SC-82AB	3000 / Tape & Reel
NCP305LSQ37T1G	3.7			SHV	SC-82AB (Pb-Free)							
NCP305LSQ40T1	4.0			SHR	SC-82AB							
NCP305LSQ40T1G	4.0			SHR	SC-82AB (Pb-Free)							
NCP305LSQ44T1	4.4			SHN	SC-82AB							
NCP305LSQ44T1G	4.4			SHN	SC-82AB							
NCV305LSQ44T1G*	4.4			AAH	(Pb-Free)							
NCP305LSQ45T1	4.5			SHL	SC-82AB							
NCP305LSQ45T1G	4.5			SHL	SC-82AB (Pb-Free)							
NCP305LSQ47T1	4.7			SHJ	SC-82AB							
NCP305LSQ47T1G	4.7			SHJ	SC-82AB (Pb-Free)							
NCP305LSQ49T1	4.9			SHH	SC-82AB							
NCP305LSQ49T1G	4.9			SHH	SC-82AB (Pb-Free)							

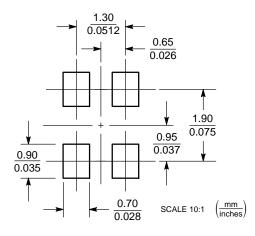

NOTE: The ordering information lists standard undervoltage thresholds with active low outputs. Additional active low threshold devices, ranging from 0.9 V to 4.9 V in 100 mV increments and NCP304 active high output devices, ranging from 0.9 V to 4.9 V in 100 mV increments can be manufactured. Contact your ON Semiconductor representative for availability. The electrical characteristics of these additional devices are shown in Tables 1 and 2.


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NCV prefix for automotive and other applications requiring site and control changes. NCVxxx: $T_{low} = -40^{\circ}C$, $T_{high} = +125^{\circ}C$. Guaranteed by design.

PACKAGE DIMENSIONS

SC-82AB SQ SUFFIX CASE 419C-02 ISSUE E



NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- CONTROLLING DIMENSION: MILLIMETER.
 419C-01 OBSOLETE. NEW STANDARD IS 419C-02.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	1.8	2.2	0.071	0.087
В	1.15	1.35	0.045	0.053
С	0.8	1.1	0.031	0.043
D	0.2	0.4	0.008	0.016
F	0.3	0.5	0.012	0.020
G	1.1	1.5	0.043	0.059
Н	0.0	0.1	0.000	0.004
J	0.10	0.26	0.004	0.010
K	0.1		0.004	
L	0.05	BSC	0.002	BSC
N	0.2	REF	0.008	REF
S	1.8	2.4	0.07	0.09

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and was are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products or any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportun

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative