5.0 V, 450 mA Low-Drop Voltage Regulator

The NCV4275 is an integrated low dropout regulator designed for use in harsh automotive environments. It includes wide operating temperature and input voltage ranges. The output is regulated at 5.0 V and is rated to 450 mA of output current. It also provides a number of features, including overcurrent protection, overtemperature protection and a programmable microprocessor reset. The NCV4275 is available in the DPAK and D²PAK surface mount packages. The output is stable over a wide output capacitance and ESR range.

Features

- 5.0 V, ±2% Output Voltage
- 450 mA Output Current
- Very Low Current Consumption
- Active Reset Output
- Reset Low Down to $V_0 = 1.0 \text{ V}$
- 500 mV (max) Dropout Voltage
- Fault Protection
 - ◆ +45 V Peak Transient Voltage
 - → -42 V Reverse Voltage
 - ◆ Short Circuit
 - ◆ Thermal Overload
- Pb-Free Packages are Available
- NCV Prefix for Automotive and Other Applications Requiring Site and Control Changes

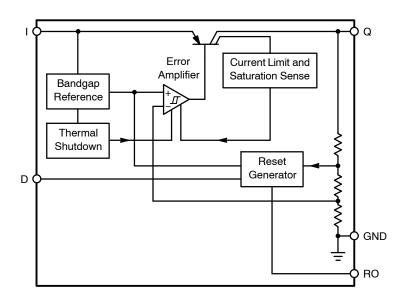


Figure 1. Block Diagram



ON Semiconductor®

http://onsemi.com

DPAK 5-PIN DT SUFFIX CASE 175AA

MARKING

D²PAK 5-PIN DS SUFFIX CASE 936A

Pin 1. I 2. RO

Tab, 3. GND* 4. D

5. Q

* Tab is connected to Pin 3 on all packages

A = Assembly Location

WL, L = Wafer Lot
 Y = Year
 WW = Work Week
 G = Lead Free Indicator

ORDERING INFORMATION

See detailed ordering and shipping information in the dimensions section on page 12 of this data sheet.

PIN FUNCTION DESCRIPTION

Pin No.	Symbol	Description
1	I	Input; Battery Supply Input Voltage. Bypass to ground with a ceramic capacitor.
2	RO	Reset Output; Open Collector Active Reset (accurate when I > 1.0 V).
3	GND	Ground; Pin 3 internally connected to tab.
4	D	Reset Delay; timing capacitor to GND for Reset Delay function.
5	Q	Output; $\pm 2.0\%$, 450 mA output. 22 μF , ESR < 5.0 Ω to ground.

MAXIMUM RATINGS†

Rating	Symbol	Min	Max	Unit
Input Voltage	VI	-42	45	V
Input Peak Transient Voltage	VI	-	45	V
Output Voltage	VQ	-1.0	16	V
Reset Output Voltage	V _{RO}	-0.3	25	V
Reset Output Current	I _{RO}	-5.0	5.0	mA
Reset Delay Voltage	V_D	-0.3	7.0	V
Reset Delay Current	I _D	-2.0	2.0	mA
Input Voltage Operating Range	VI	5.5	42	V
ESD Susceptibility -Human Body Model -Machine Model	- -	4.0 200	- -	kV V
Junction Temperature	T_J	-40	150	°C
Storage Temperature	T _{stg}	-55	150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

LEAD TEMPERATURE SOLDERING REFLOW (Note 1)

Lead Free, 60 sec-150 sec above 217	T _{SLD}	-	265 Peak	°C	
Leaded, 60 sec-150 sec above 183	T _{SLD}	_	240 Peak	°C	

THERMAL CHARACTERISTICS

Characteristic	Test Conditions (Typical Value)					
DPAK 5-PIN PACKAGE						
	Min Pad Board (Note 2)	1" Pad Board (Note 3)				
Junction-to-Tab (psi-JLx, ψ _{JLx})	4.2	4.7	C/W			
Junction-to-Ambient ($R_{\theta JA}$, θ_{JA})	100.9	46.8	C/W			

D²PAK 5-PIN PACKAGE

	0.4 sq. in. Spreader Board (Note 4)	1.2 sq. in. Spreader Board (Note 5)	
Junction-to-Tab (psi-JLx, ψ _{JLx})	3.8	4.0	C/W
Junction–to–Ambient ($R_{\theta JA}$, θ_{JA})	74.8	41.6	C/W

- 1. PR_R IPC / JEDEC J-STD-020C

- 1. FRR IFC 7 JEDEC 3-STD-020C
 2. 1 oz. copper, 0.26 inch² (168 mm²) copper area, 0.062" thick FR4.
 3. 1 oz. copper, 1.14 inch² (736 mm²) copper area, 0.062" thick FR4.
 4. 1 oz. copper, 0.373 inch² (241 mm²) copper area, 0.062" thick FR4.
 5. 1 oz. copper, 1.222 inch² (788 mm²) copper area, 0.062" thick FR4.

[†]During the voltage range which exceeds the maximum tested voltage of I, operation is assured, but not specified. Wider limits may apply. Thermal dissipation must be observed closely.

ELECTRICAL CHARACTERISTICS ($V_I = 13.5 \text{ V}; -40 ^{\circ}\text{C} < T_J < 150 ^{\circ}\text{C}; \text{ unless otherwise noted. Refer to Figure 13 for conditions.)}$

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Output			•			
Output Voltage	V_{Q}	$100 \mu A < I_Q < 400 mA, 6.0 V < V_I < 28 V$	4.9	5.0	5.1	V
Output Voltage	VQ	$100 \mu A < I_Q < 200 mA, 6.0 V < V_I < 40 V$	4.9	5.0	5.1	V
Output Current Limitation	IQ	V _Q = 4.5 V	450	700	-	mA
Quiescent Current, I _q = I _I - I _Q	Iq	I _Q = 1.0 mA	-	150	200	μΑ
Quiescent Current, Iq = I _I - I _Q	Iq	I _Q = 1.0 mA, T _A = 25°C	-	135	150	μΑ
Quiescent Current, Iq = I _I - I _Q	Iq	I _Q = 250 mA	-	10	15	mA
Quiescent Current, Iq = I _I - I _Q	Iq	I _Q = 400 mA	-	23	35	mA
Dropout Voltage	V _{dr}	$I_Q = 300 \text{ mA}, V_{dr} = V_I - V_Q, V_I = 5.0 \text{ V}$	-	250	500	mV
Load Regulation	ΔV_{Q}	I _Q = 5.0 mA to 400 mA	-30	15	30	mV
Line Regulation	ΔV_{Q}	$\Delta V_{I} = 8.0 \text{ V to } 32 \text{ V}, I_{Q} = 5.0 \text{ mA}$	-15	5.0	15	mV
Power Supply Ripple Rejection	P _{SRR}	$f_r = 100 \text{ Hz}, V_r = 0.5 V_{pp}$	-	60	-	dB
Temperature Output Voltage Drift	d _{VQ/dt}	-	-	0.5	-	mV/k
Reset Timing D and Output RO						
Reset Switching Threshold	$V_{Q,rt}$	-	4.53	4.65	4.8	V
Reset Output Low Voltage	V_{ROL}	$R_{ext} > 5.0 \text{ k}, V_Q > 1.0 \text{ V}$	-	0.2	0.4	V
Reset Output Leakage Current	V _{ROH}	V _{ROH} = 5.0 V	-	0	10	μΑ
Reset Charging Current	I _{D,C}	V _D = 1.0 V	3.0	5.5	9.0	μΑ
Upper Timing Threshold	V _{DU}	-	1.5	1.8	2.2	V
Lower Timing Threshold	V_{DL}	-	0.2	0.4	0.7	V
Reset Delay Time	t _{rd}	C _D = 47 nF	10	16	22	ms
Reset Reaction Time	t _{rr}	C _D = 47 nF	-	1.5	4.0	μs
Thermal Shutdown						
Shutdown Temperature (Note 6)	T_{SD}	-	150	-	210	°C

^{6.} Guaranteed by design, not tested in production.

TYPICAL PERFORMANCE CHARACTERISTICS

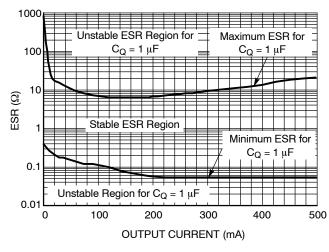


Figure 2. Output Stability with Output Capacitor ESR

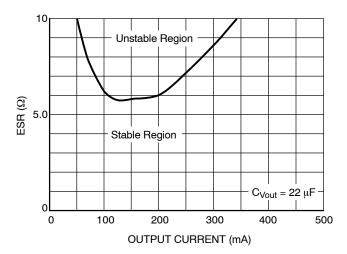


Figure 3. Output Capacitor ESR

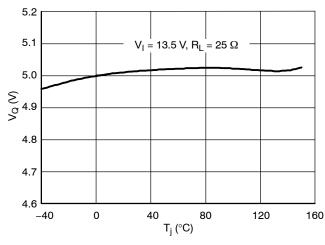


Figure 4. Output Voltage V_Q vs. Temperature T_j

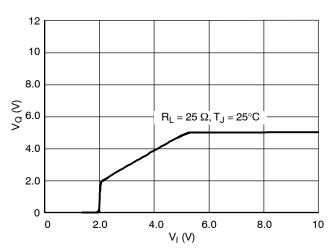


Figure 5. Output Voltage $V_{\rm Q}$ vs. Input Voltage $V_{\rm I}$

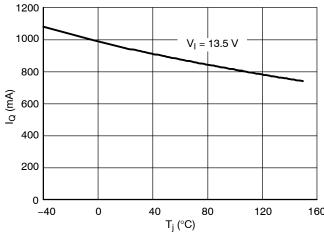


Figure 6. Output Current I_Q vs. Temperature T_J

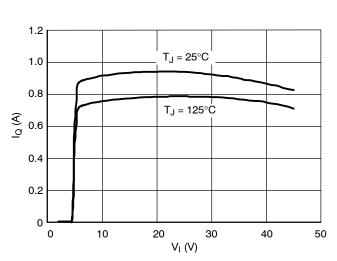


Figure 7. Output Current I_Q vs. Input Voltage V_I

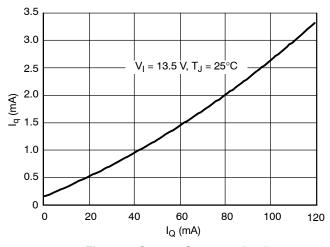


Figure 8. Current Consumption $\mathbf{I_q}$ vs. Output Current $\mathbf{I_Q}$

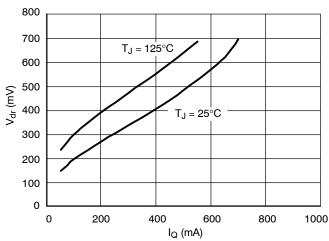
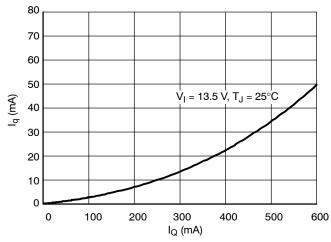



Figure 9. Drop Voltage V_{dr} vs. Output Current I_Q

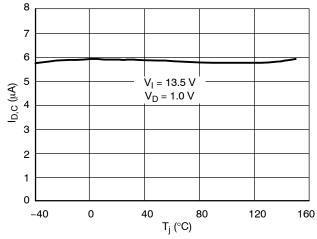


Figure 10. Current Consumption $\mathbf{I_q}$ vs. Output Current $\mathbf{I_Q}$

Figure 11. Charge Current $I_{D,C}$ vs. Temperature T_J

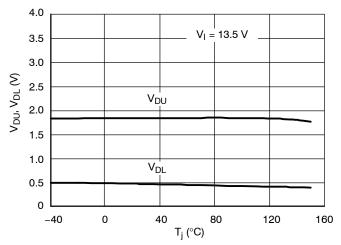


Figure 12. Delay Switching Threshold $\rm V_{DU}, \rm V_{DL}$ vs. Temperature $\rm T_{J}$

APPLICATION INFORMATION

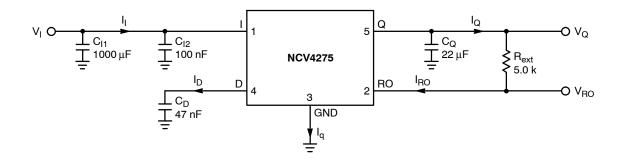


Figure 13. Test Circuit

Circuit Description

The NCV4275 is an integrated low dropout regulator that provides 5.0 V, 450 mA protected output and a signal for power on reset. The regulation is provided by a PNP pass transistor controlled by an error amplifier with a bandgap reference, which gives it the lowest possible drop out voltage and best possible temperature stability. The output current capability is 450 mA, and the base drive quiescent current is controlled to prevent over saturation when the input voltage is low or when the output is overloaded. The regulator is protected by both current limit and thermal shutdown. Thermal shutdown occurs above 150°C to protect the IC during overloads and extreme ambient temperatures. The delay time for the reset output is adjustable by selection of the timing capacitor. See Figure 13, Test Circuit, for circuit element nomenclature illustration.

Regulator

The error amplifier compares the reference voltage to a sample of the output voltage (VQ) and drives the base of a PNP series pass transistor by a buffer. The reference is a bandgap design to give it a temperature–stable output. Saturation control of the PNP is a function of the load current and input voltage. Over saturation of the output power device is prevented, and quiescent current in the ground pin is minimized.

Regulator Stability Considerations

The input capacitors (C_{I1} and C_{I2}) are necessary to stabilize the input impedance to avoid voltage line influences. Using a resistor of approximately 1.0 Ω in series with C_{I2} can stop potential oscillations caused by stray inductance and capacitance.

The output capacitor helps determine three main characteristics of a linear regulator: startup delay, load transient response and loop stability. The capacitor value and type should be based on cost, availability, size and temperature constraints. A tantalum or aluminum electrolytic capacitor is best, since a film or ceramic capacitor with its almost zero ESR can cause instability. The aluminum electrolytic capacitor is the least expensive solution, but, if the circuit operates at low temperatures (-25°C to -40°C), both the capacitance and ESR of the capacitor will vary considerably. The capacitor manufacturer's data sheet usually provides this information.

The value for the output capacitor C_Q shown in Figure 13, Test Circuit, should work for most applications; however, it is not necessarily the optimized solution. Stability is guaranteed for $C_Q \geq 22~\mu F$ and an ESR $\leq 5.0~\Omega$. The range of stability versus capacitance, load current and capacitive ESR is illustrated in Figure 2.

Reset Output

The reset output is used as the power on indicator to the microcontroller. This signal indicates when the output voltage is suitable for reliable operation of the controller. It pulls low when the output is not considered to be ready. RO is pulled up to VQ by an external resistor, typically 5.0 k Ω in value. The input and output conditions that control the Reset Output and the relative timing are illustrated in Figure 14, Reset Timing.

Output voltage regulation must be maintained for the delay time before the reset output signals a valid condition. The delay for the reset output is defined as the amount of time it takes the timing capacitor on the delay pin to charge from a residual voltage of 0.0 V to the upper timing threshold voltage V_{DU} of 1.8 V. The charging current for this is $I_{D,C}$ of 5.5 μA and D pin voltage in steady state is typically 3.2 V. By using typical IC parameters with a 47 nF capacitor on the D pin, the following time delay is derived:

$$t_{RD} = C_D V_{DU} / I_{D.C}$$

$$t_{RD} = 47 \text{ nF} (1.8 \text{ V}) / 5.5 \mu A = 15.4 \text{ ms}$$

Other time delays can be obtained by changing the capacitor value.

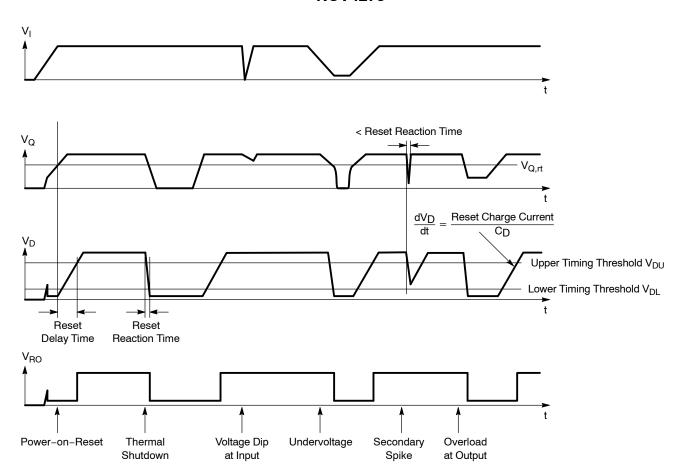


Figure 14. Reset Timing

Calculating Power Dissipation in a Single Output Linear Regulator

The maximum power dissipation for a single output regulator (Figure 15) is:

$$PD(max) = [VI(max) - VQ(min)] IQ(max) + VI(max)Iq$$
(1)

where

 $\begin{array}{ll} V_{I(max)} & \text{ is the maximum input voltage,} \\ V_{Q(min)} & \text{ is the minimum output voltage,} \end{array}$

 $I_{Q(max)}$ is the maximum output current for the

application,

 I_q is the quiescent current the regulator consumes at $I_{Q(max)}$.

Once the value of $P_{D(max)}$ is known, the maximum permissible value of $R_{\theta JA}$ can be calculated:

$$R_{\theta JA} = \frac{150^{\circ}C - T_{A}}{P_{D}} \tag{2}$$

The value of $R_{\theta JA}$ can then be compared with those in the package section of the data sheet. Those packages with $R_{\theta JA}$'s less than the calculated value in Equation 2 will keep the die temperature below 150°C.

In some cases, none of the packages will be sufficient to dissipate the heat generated by the IC, and an external heatsink will be required.

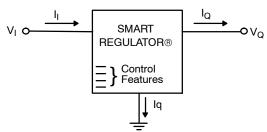


Figure 15. Single Output Regulator with Key Performance Parameters Labeled

Heatsinks

A heatsink effectively increases the surface area of the package to improve the flow of heat away from the IC and into the surrounding air.

Each material in the heat flow path between the IC and the outside environment will have a thermal resistance. Like series electrical resistances, these resistances are summed to determine the value of $R_{\theta JA}$:

$$R_{\theta}JA = R_{\theta}JC + R_{\theta}CS + R_{\theta}SA \tag{3}$$

where

 $\begin{array}{ll} R_{\theta JC} & \text{is the junction-to-case thermal resistance,} \\ R_{\theta CS} & \text{is the case-to-heatsink thermal resistance,} \\ R_{\theta SA} & \text{is the heatsink-to-ambient thermal} \end{array}$

resistance.

 $R_{\theta JC}$ appears in the package section of the data sheet. Like $R_{\theta JA}$, it too is a function of package type. $R_{\theta CS}$ and $R_{\theta SA}$ are functions of the package type, heatsink and the interface between them. These values appear in heatsink data sheets of heatsink manufacturers.

Thermal, mounting, and heatsinking considerations are discussed in the ON Semiconductor application note AN1040/D.

Thermal Model

A discussion of thermal modeling is in the ON Semiconductor web site: http://www.onsemi.com/pub/collateral/BR1487-D.PDF.

Table 1. DPAK 5-Lead Thermal RC Network Models

Drain Co	pper Area (1	oz thick)	168 mm ²	736 mm ²		168 mm ²	736 mm ²	
(SPICE Deck Format)		Cauer I	Network		Foster	Network		
			168 mm ²	736 mm ²	Units	Tau	Tau	Units
C_C1	Junction	Gnd	1.00E-06	1.00E-06	W-s/C	1.36E-08	1.361E-08	sec
C_C2	node1	Gnd	1.00E-05	1.00E-05	W-s/C	7.41E-07	7.411E-07	sec
C_C3	node2	Gnd	6.00E-05	6.00E-05	W-s/C	1.04E-05	1.029E-05	sec
C_C4	node3	Gnd	1.00E-04	1.00E-04	W-s/C	3.91E-05	3.737E-05	sec
C_C5	node4	Gnd	4.36E-04	3.64E-04	W-s/C	1.80E-03	1.376E-03	sec
C_C6	node5	Gnd	6.77E-02	1.92E-02	W-s/C	3.77E-01	2.851E-02	sec
C_C7	node6	Gnd	1.51E-01	1.27E-01	W-s/C	3.79E+00	9.475E-01	sec
C_C8	node7	Gnd	4.80E-01	1.018	W-s/C	2.65E+01	1.173E+01	sec
C_C9	node8	Gnd	3.740	2.955	W-s/C	8.71E+01	8.59E+01	sec
C_C10	node9	Gnd	10.322	0.438	W-s/C			sec
			168 mm ²	736 mm ²		R's	R's	
R_R1	Junction	node1	0.015	0.015	C/W	0.0123	0.0123	C/W
R_R2	node1	node2	0.08	0.08	C/W	0.0585	0.0585	C/W
R_R3	node2	node3	0.4	0.4	C/W	0.0304	0.0287	C/W
R_R4	node3	node4	0.2	0.2	C/W	0.3997	0.3772	C/W
R_R5	node4	node5	2.97519	2.6171	C/W	3.115	2.68	C/W
R_R6	node5	node6	8.2971	1.6778	C/W	3.571	1.38	C/W
R_R7	node6	node7	25.9805	7.4246	C/W	12.851	5.92	C/W
R_R8	node7	node8	46.5192	14.9320	C/W	35.471	7.39	C/W
R_R9	node8	node9	17.7808	19.2560	C/W	46.741	28.94	C/W
R_R10	node9	Gnd	0.1	0.1758	C/W			C/W

NOTE: Bold face items represent the package without the external thermal system.

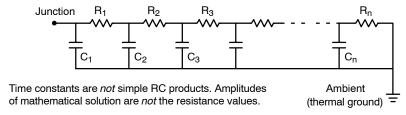


Figure 16. Grounded Capacitor Thermal Network ("Cauer" Ladder)

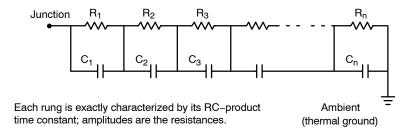
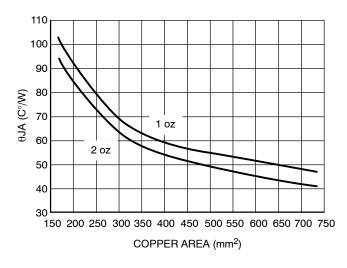


Figure 17. Non-Grounded Capacitor Thermal Ladder ("Foster" Ladder)


Table 2. D²PAK 5-Lead Thermal RC Network Models

Drain Co	pper Area (1	oz thick)	241 mm ²	788 mm ²		241 mm ²	788 mm ²	
(SPICE Deck Format)		Cauer I	Network		Foster I	Network		
			241 mm ²	653 mm ²	Units	Tau	Tau	Units
C_C1	Junction	Gnd	1.00E-06	1.00E-06	W-s/C	1.361E-08	1.361E-08	sec
C_C2	node1	Gnd	1.00E-05	1.00E-05	W-s/C	7.411E-07	7.411E-07	sec
C_C3	node2	Gnd	6.00E-05	6.00E-05	W-s/C	1.005E-05	1.007E-05	sec
C_C4	node3	Gnd	1.00E-04	1.00E-04	W-s/C	3.460E-05	3.480E-05	sec
C_C5	node4	Gnd	2.82E-04	2.87E-04	W-s/C	7.868E-04	8.107E-04	sec
C_C6	node5	Gnd	5.58E-03	5.95E-03	W-s/C	7.431E-03	7.830E-03	sec
C_C7	node6	Gnd	4.25E-01	4.61E-01	W-s/C	2.786E+00	2.012E+00	sec
C_C8	node7	Gnd	9.22E-01	2.05	W-s/C	2.014E+01	2.601E+01	sec
C_C9	node8	Gnd	1.73	4.88	W-s/C	1.134E+02	1.218E+02	sec
C_C10	node9	Gnd	7.12	1.31	W-s/C			sec
			241 mm ²	653 mm ²		R's	R's	
R_R1	Junction	node1	0.015	0.0150	C/W	0.0123	0.0123	C/W
R_R2	node1	node2	0.08	0.0800	C/W	0.0585	0.0585	C/W
R_R3	node2	node3	0.4	0.4000	C/W	0.0257	0.0260	C/W
R_R4	node3	node4	0.2	0.2000	C/W	0.3413	0.3438	C/W
R_R5	node4	node5	1.85638	1.8839	C/W	1.77	1.81	C/W
R_R6	node5	node6	1.23672	1.2272	C/W	1.54	1.52	C/W
R_R7	node6	node7	9.81541	5.3383	C/W	4.13	3.46	C/W
R_R8	node7	node8	33.1868	18.9591	C/W	6.27	5.03	C/W
R_R9	node8	node9	27.0263	13.3369	C/W	60.80	29.30	C/W
R_R10	node9	gnd	1.13944	0.1191	C/W			C/W

NOTE: Bold face items represent the package without the external thermal system.

The Cauer networks generally have physical significance and may be divided between nodes to separate thermal behavior due to one portion of the network from another. The Foster networks, though when sorted by time constant (as above) bear a rough correlation with the Cauer networks, are really only convenient mathematical models. Cauer networks can be easily implemented using circuit simulating tools, whereas Foster networks may be more easily implemented using mathematical tools (for instance, in a spreadsheet program), according to the following formula:

$$R(t) = \sum_{i=1}^{n} R_i (1-e^{-t/tau_i})$$

110 90 80 70 60 2 oz 1 oz 60 40 30 150 200 250 300 350 400 450 500 550 600 650 700 750 COPPER AREA (mm²)

Figure 18. θ JA vs. Copper Spreader Area, DPAK 5-Lead

Figure 19. θ JA vs. Copper Spreader Area, D²PAK 5-Lead

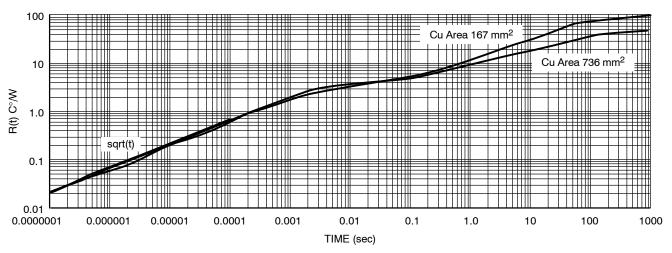


Figure 20. Single-Pulse Heating Curves, DPAK 5-Lead

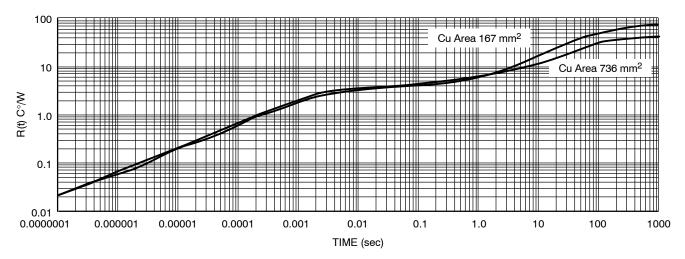


Figure 21. Single-Pulse Heating Curves, D²PAK 5-Lead

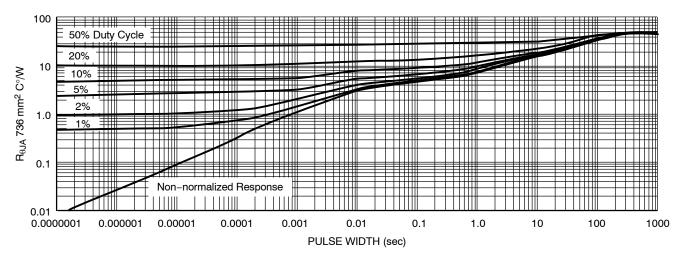


Figure 22. Duty Cycle for 1" Spreader Boards, DPAK 5-Lead

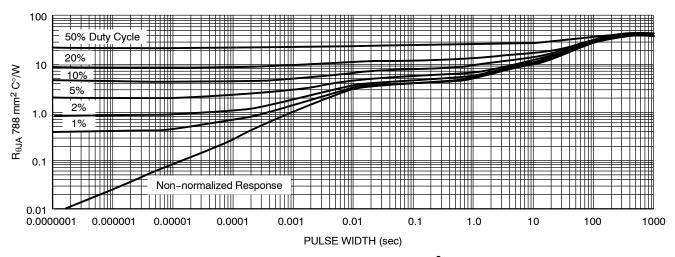
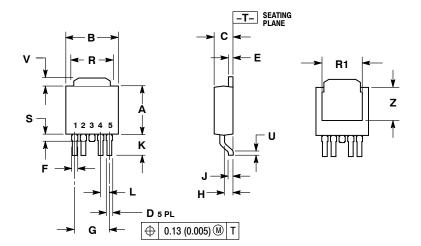


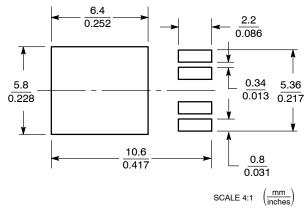
Figure 23. Duty Cycle for 1" Spreader Boards, D2PAK 5-Lead

ORDERING INFORMATION

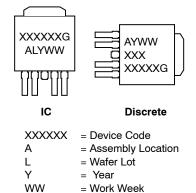

Device	Package	Shipping [†]
NCV4275DTRK	DPAK	
NCV4275DTRKG	DPAK (Pb-Free)	2500 Tape & Reel
NCV4275DS	D ² PAK	
NCV4275DSG	D ² PAK (Pb-Free)	50 Units/Rail
NCV4275DSR4	D ² PAK	
NCV4275DSR4G	D ² PAK (Pb-Free)	800 Tape & Reel

[†]For information on tape and reel specifications,including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DPAK-5, CENTER LEAD CROP CASE 175AA **ISSUE B**


DATE 15 MAY 2014

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.


	INC	HES	MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.22
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.020	0.028	0.51	0.71
Е	0.018	0.023	0.46	0.58
F	0.024	0.032	0.61	0.81
G	0.180	BSC	4.56 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.102	0.114	2.60	2.89
L	0.045	BSC	1.14 BSC	
R	0.170	0.190	4.32	4.83
R1	0.185	0.210	4.70	5.33
S	0.025	0.040	0.63	1.01
U	0.020		0.51	
٧	0.035	0.050	0.89	1.27
Z	0.155	0.170	3.93	4.32

RECOMMENDED SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

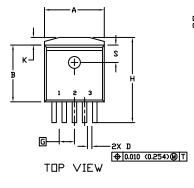
GENERIC MARKING DIAGRAMS*

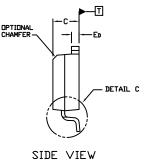
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

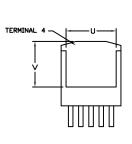
= Pb-Free Package

DOCUMENT NUMBER:	98AON12855D	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DPAK-5 CENTER LEAD C	ROP	PAGE 1 OF 1	

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

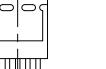

MECHANICAL CASE OUTLINE


D²PAK 5-LEAD CASE 936A-02 **ISSUE E**

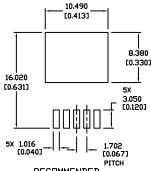

DATE 28 JUL 2021

DETAIL C TIP LEADFORM ROTATED 90° CW

OPTIONAL CHAMFER DETAIL C


BOTTOM VIEW

SIDE VIEW SINGLE GUAGE

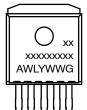

DUAL GUAGE

OPTIONAL CONSTRUCTIONS

BOTTOM VIEW

RECOMMENDED MOUNTING FOOTPRINT *

For additional information on our Pb-Free strategy and soldering details, please download the IN Seniconductor Soldering and Mounting Techniques Reference Manual, SILDERRM/D.


NOTES

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCHES
- TAB CONTOUR OPTIONAL WITHIN DIMENSIONS
- DIMENSIONS U AND V ESTABLISH A MINIMUM MOUNTING SURFACE FOR TERMINAL 4.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS. MOLD FLASH AND GATE PROTRUSIONS NOT TO EXCEED 0.025 (0.635) MAXIMUM.

	INCHES		MILLIMETERS		
DIM	MIN.	MAX.	MIN.	MAX.	
Α	0.396	0.403	9.804	10.236	
В	0.356	0.368	9.042	9.347	
С	0.170	0.180	4.318	4.572	
D	0.026	0.036	0.660	0.914	
ED	0.045	0.055	1.143	1.397	
Es	0.018	0.026	0.457	0.660	
G	0.067	BSC	1.702 BSC		
Н	0.539	0.579	13.691	14.707	
К	0.050	REF	1.270 REF		
L	0.000	0.010	0.000	0.254	
М	0.088	0.102	2.235	2.591	
N	0.018	0.026	0.457	0.660	
Р	0.058	0.078	1.473	1.981	
R	•	8.	0*	8.	
S	0.116 REF		2.946	5 REF	
٥	0.200	MIN	5.080	MIN	
V	0.250	MIN	6.350	MIN	

GENERIC MARKING DIAGRAM*

SEATING

= Device Code XXXXXX = Assembly Location Α WL = Wafer Lot

= Year WW = Work Week G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASH01006A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	D2PAK 5-LEAD	•	PAGE 1 OF 1

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer p

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

onsemi Website: www.onsemi.com