onsemi

Dual General Purpose Transistors

NPN/PNP Duals (Complementary)

BC846BPDW1, BC847BPDW1, BC848CPDW1 Series

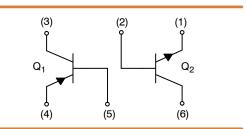
These transistors are designed for general purpose amplifier applications. They are housed in the SOT-363/SC-88 which is designed for low power surface mount applications.

Features

- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS - NPN

Rating	Symbol	Value	Unit
Collector-Emitter Voltage BC846 BC847 BC848	V _{CEO}	65 45 30	V
Collector-Base Voltage BC846 BC847 BC848	V _{CBO}	80 50 30	V
Emitter-Base Voltage	V_{EBO}	6.0	V
Collector Current – Continuous	Ι _C	100	mAdc
Collector Current – Peak	I _{CM}	200	mAdc


MAXIMUM RATINGS – PNP

Rating	Symbol	Value	Unit
Collector-Emitter Voltage BC846 BC847 BC848	V _{CEO}	-65 -45 -30	V
Collector-Base Voltage BC846 BC847 BC848	V _{CBO}	-80 -50 -30	V
Emitter-Base Voltage	V _{EBO}	-6.0	V
Collector Current – Continuous	۱ _C	-100	mAdc
Collector Current – Peak	I _{CM}	-200	mAdc

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

STYLE 1

MARKING DIAGRAM

XX = Device Code M = Date Code

= Pb–Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Mark	Package	Shipping [†]
BC846BPDW1T1G, SBC846BPDW1T1G	BB	SOT-363 (Pb-Free)	3,000 / Tape & Reel
SBC846BPDW1T2G	BB	SOT-363 (Pb-Free)	3,000 / Tape & Reel
SBC846BPDW1T3G	BB	SOT-363 (Pb-Free)	10,000 / Tape & Reel
BC847BPDW1T1G	BF	SOT-363 (Pb-Free)	3,000 / Tape & Reel
SBC847BPDW1T1G	BF	SOT-363 (Pb-Free)	3,000 / Tape & Reel
SBC847BPDW1T3G	BF	SOT-363 (Pb-Free)	10,000 / Tape & Reel
BC847BPDW1T2G	BF	SOT-363 (Pb-Free)	3,000 / Tape & Reel
BC848CPDW1T1G	BL	SOT-363 (Pb-Free)	3,000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL CHARACTERISTICS

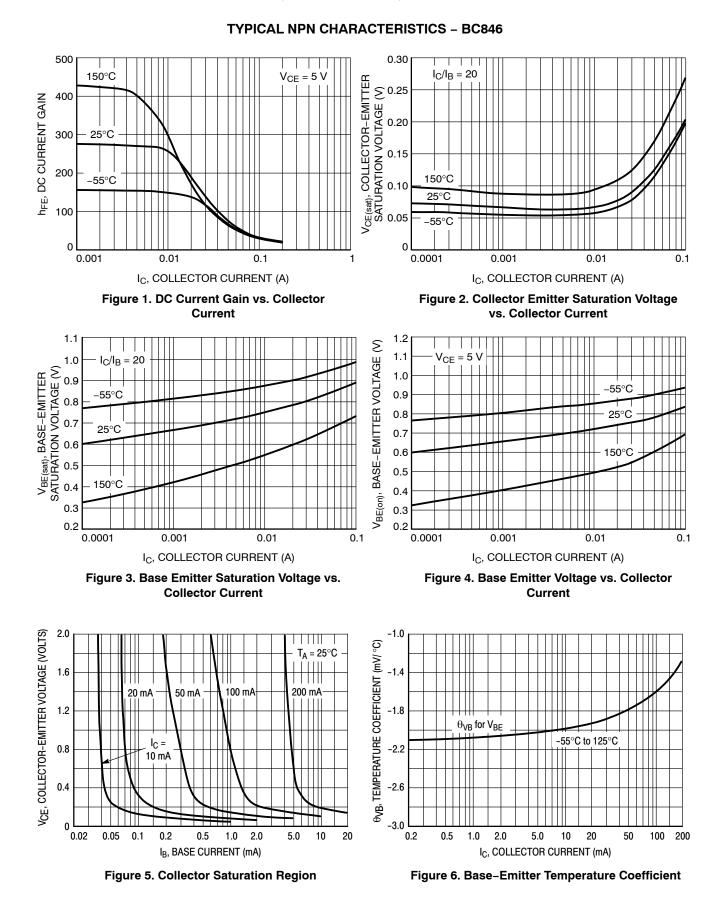
Characteristic	Symbol	Max	Unit
Total Device Dissipation Per Device FR-5 Board (Note 1) $T_A = 25^{\circ}C$ Derate above 25°C	P _D	380 250 3.0	mW mW/°C mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{ hetaJA}$	328	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C

1. $FR-5 = 1.0 \times 0.75 \times 0.062$ in.

ELECTRICAL CHARACTERISTICS (NPN) (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	·				
Collector – Emitter Breakdown Voltage (I _C = 10 mA) BC846 BC847 BC848	V _(BR) CEO	65 45 30	- - -	- - -	V
$\begin{array}{l} \mbox{Collector}-\mbox{Emitter Breakdown Voltage} \\ (I_C = 10 \ \mu A, \ V_{EB} = 0) \\ BC846 \\ BC847B \\ BC848 \end{array}$	V _{(BR)CES}	80 50 30	- - -	- - -	V
$\begin{array}{c} \mbox{Collector-Base Breakdown Voltage} \\ (I_C = 10 \ \mu A) \\ \mbox{BC846} \\ \mbox{BC847} \\ \mbox{BC848} \end{array}$	V _(BR) CBO	80 50 30	- - -	- - -	V
Emitter – Base Breakdown Voltage (I _E = 1.0 μA) BC846 BC847 BC848	V _{(BR)EBO}	6.0 6.0 6.0	- - -	- - -	V
Collector Cutoff Current ($V_{CB} = 30 V$) ($V_{CB} = 30 V$, $T_A = 150^{\circ}C$)	I _{CBO}	-	-	15 5.0	nA μA

ON CHARACTERISTICS


$ \begin{array}{l} DC \mbox{ Current Gain} \\ (I_{C} = 10 \ \mu A, \ V_{CE} = 5.0 \ V) \\ BC846B, \ BC847B \\ BC848C \\ (I_{C} = 2.0 \ mA, \ V_{CE} = 5.0 \ V) \\ BC846B, \ BC847B \\ BC848C \\ \end{array} $	hFE	- - 200 420	150 270 290 520	- - 475 800	-
$ Collector - Emitter Saturation Voltage \\ (I_C = 10 mA, I_B = 0.5 mA) All devices except SBC847BPDW1T1G \\ SBC847BPDW1T1G only \\ (I_C = 100 mA, I_B = 5.0 mA) All devices \\ (I_C = 2 mA, I_B = 0.5 mA) SBC847BPDW1T1G only $	V _{CE(sat)}	- - -	- - - 0.024	0.25 0.1 0.6 -	V
Base – Emitter Saturation Voltage ($I_C = 10 \text{ mA}, I_B = 0.5 \text{ mA}$) ($I_C = 100 \text{ mA}, I_B = 5.0 \text{ mA}$)	V _{BE(sat)}	- -	0.7 0.9	-	V
$\begin{array}{l} \text{Base} - \text{Emitter Voltage} \\ (I_{C} = 2.0 \text{ mA}, \text{V}_{CE} = 5.0 \text{ V}) \\ (I_{C} = 10 \text{ mA}, \text{V}_{CE} = 5.0 \text{ V}) \end{array}$	V _{BE(on)}	580 -	660 -	700 770	mV

SMALL-SIGNAL CHARACTERISTICS

Current – Gain – Bandwidth Product ($I_C = 10 \text{ mA}, V_{CF} = 5.0 \text{ Vdc}, f = 100 \text{ MHz}$)	f _T	100			MHz
(10 - 10 mA, VCE - 3.0 Vac, 1 - 100 Wirz)		100	_	-	
Output Capacitance (V _{CB} = 10 V, f = 1.0 MHz)	C _{obo}	-	-	4.5	pF
Noise Figure	NF				dB
(I _C = 0.2 mA, V _{CE} = 5.0 Vdc, R _S = 2.0 k Ω , f = 1.0 kHz, BW = 200 Hz)		-	-	10	

ELECTRICAL CHARACTERISTICS	(PNP) (T _A = 25°C unless otherwise noted)
-----------------------------------	------	--

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage (I _C = -10 mA) BC846 BC847 BC848	V _{(BR)CEO}	-65 -45 -30	- - -		V
	V _{(BR)CES}	-80 -50 -30	- - -	- - -	V
Collector – Base Breakdown Voltage $(I_C = -10 \ \mu A)$ BC846 BC847 BC848	V _{(BR)CBO}	-80 -50 -30	- - -	- - -	V
Emitter – Base Breakdown Voltage (I _E = –1.0 μA) BC846 BC847 BC848	V _{(BR)EBO}	-6.0 -6.0 -6.0	- - -	- - -	V
Collector Cutoff Current $(V_{CB} = -30 V)$ $(V_{CB} = -30 V, T_A = 150^{\circ}C)$	I _{CBO}	- -		-15 -4.0	nA μA
ON CHARACTERISTICS					
DC Current Gain ($I_C = -10 \mu A$, $V_{CE} = -5.0 V$) BC846B, BC847B BC848C ($I_C = -2.0 mA$, $V_{CE} = -5.0 V$) BC846B, BC847B BC848C	h _{FE}	- - 200 420	150 270 290 520	- - 475 800	-
$ Collector - Emitter Saturation Voltage \\ (I_C = -10 \text{ mA}, I_B = -0.5 \text{ mA}) \text{ All devices except SBC847BPDW1T1G } \\ SBC847BPDW1T1G \text{ only} \\ (I_C = -100 \text{ mA}, I_B = -5.0 \text{ mA}) \text{ All devices} \\ (I_C = -2 \text{ mA}, I_B = -0.5 \text{ mA}) \text{ SBC847BPDW1T1G only} $	V _{CE(sat)}	- - - -	- - - -0.024	-0.3 -0.1 -0.65 -	V
Base – Emitter Saturation Voltage ($I_C = -10 \text{ mA}, I_B = -0.5 \text{ mA}$) ($I_C = -100 \text{ mA}, I_B = -5.0 \text{ mA}$)	V _{BE(sat)}		-0.7 -0.9		V
Base – Emitter On Voltage ($I_C = -2.0 \text{ mA}$, $V_{CE} = -5.0 \text{ V}$) ($I_C = -10 \text{ mA}$, $V_{CE} = -5.0 \text{ V}$)	V _{BE(on)}	-0.6		-0.75 -0.82	V
SMALL-SIGNAL CHARACTERISTICS	1				
Current – Gain – Bandwidth Product ($I_C = -10 \text{ mA}, V_{CE} = -5.0 \text{ Vdc}, f = 100 \text{ MHz}$)	f _T	100	-	-	MHz
Output Capacitance ($V_{CB} = -10 \text{ V}, \text{ f} = 1.0 \text{ MHz}$)	C _{ob}	_	_	4.5	pF
Noise Figure (I _C = -0.2 mA, V _{CE} = -5.0 Vdc, R _S = 2.0 kΩ, f = 1.0 kHz, BW = 200 Hz)	NF	_	-	10	dB

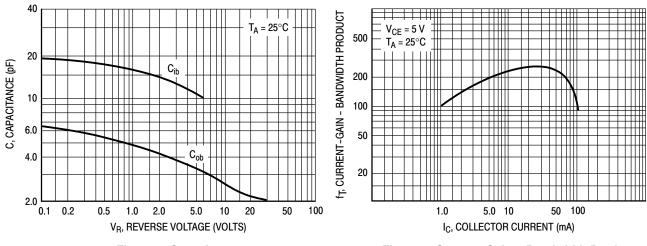
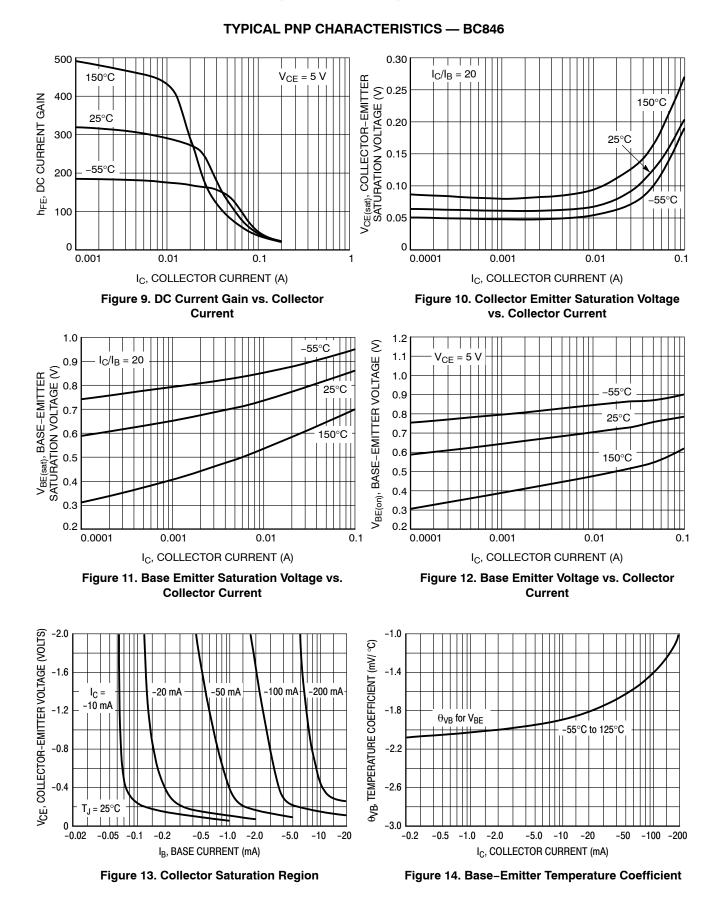



Figure 7. Capacitance

Figure 8. Current–Gain – Bandwidth Product

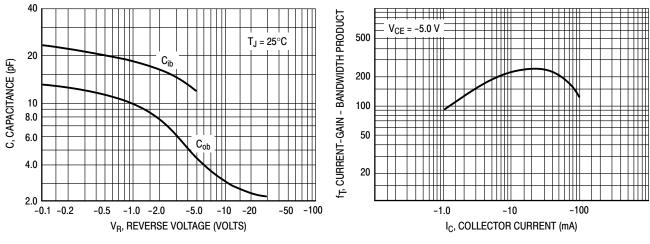
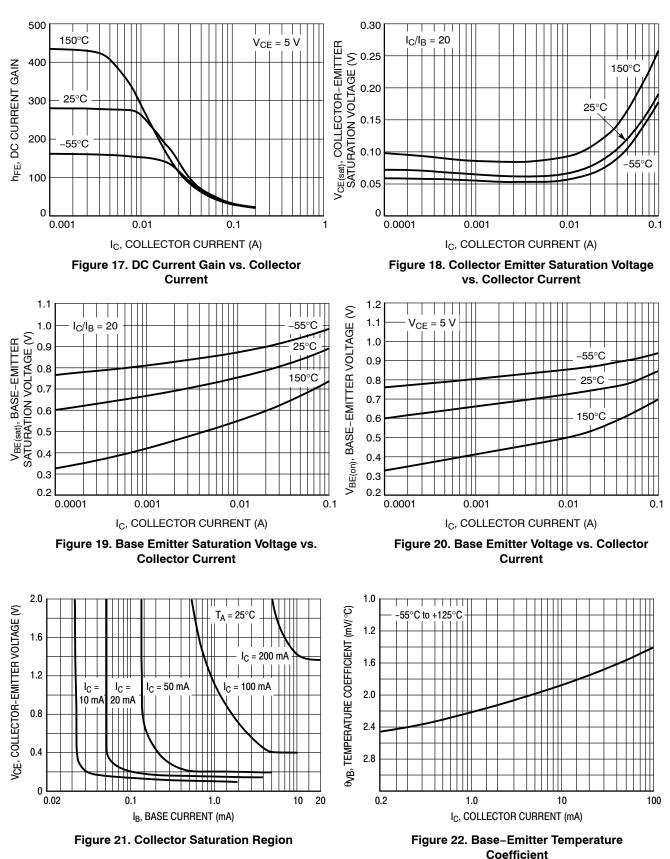
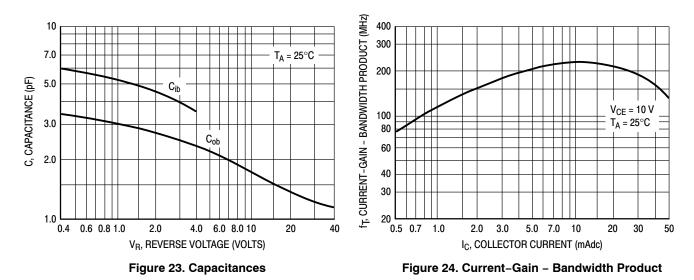
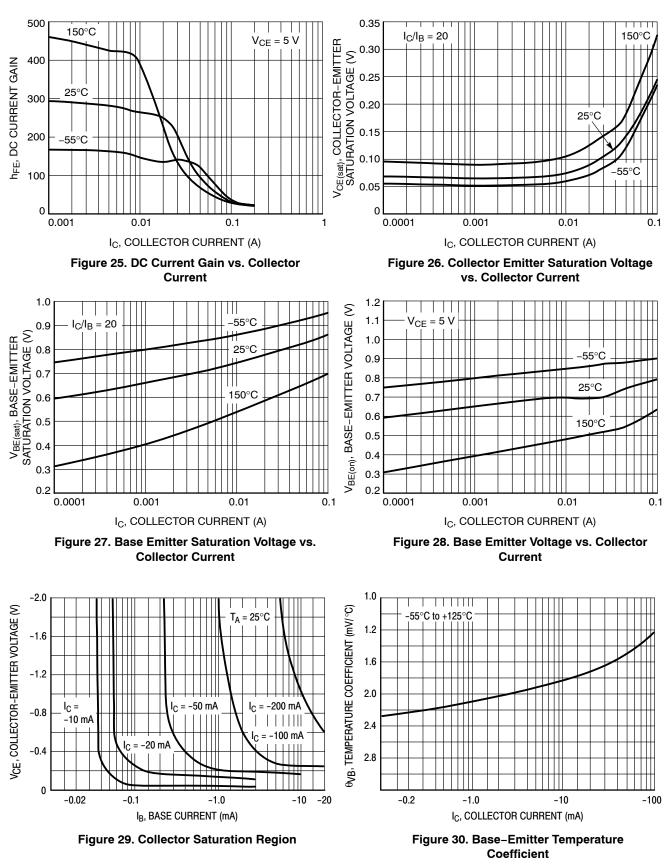
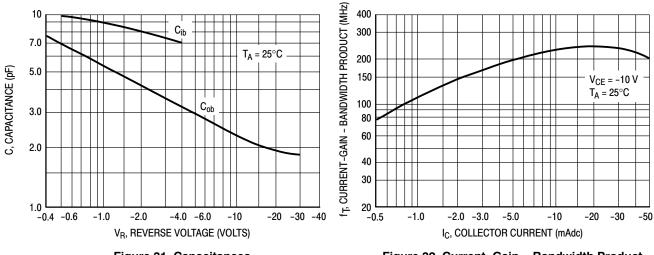
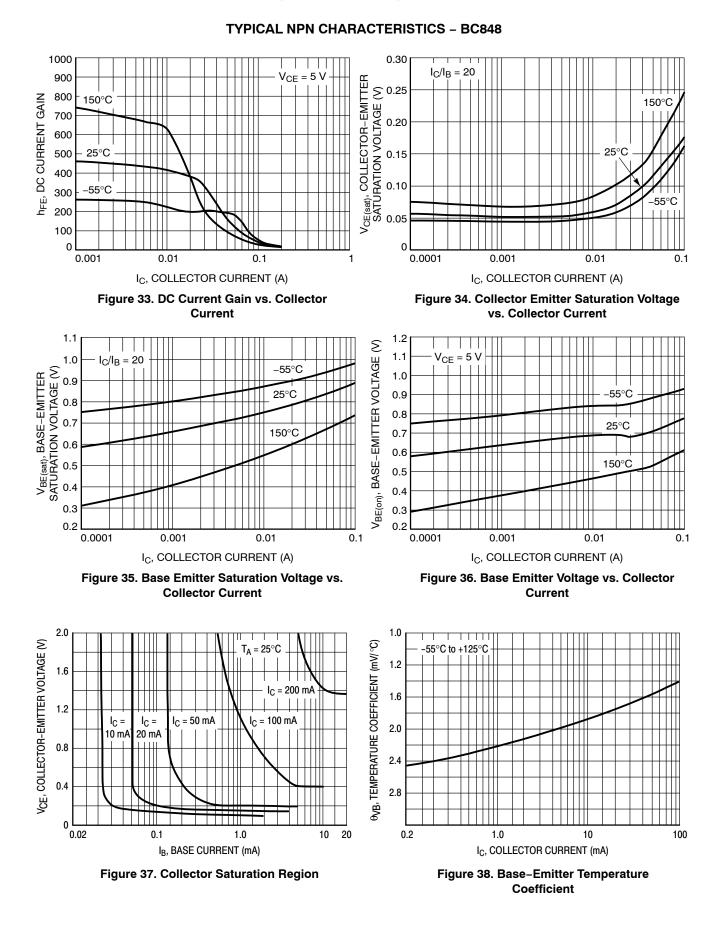
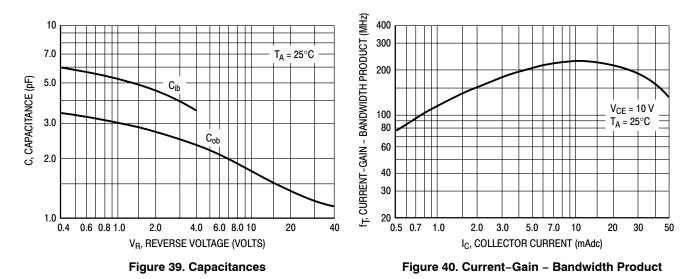
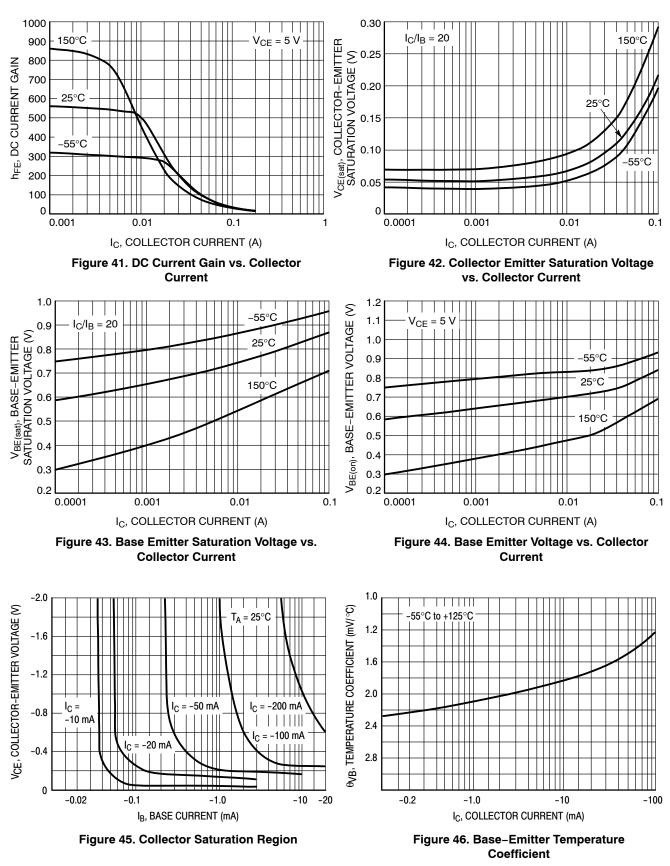





Figure 15. Capacitance

Figure 16. Current-Gain – Bandwidth Product

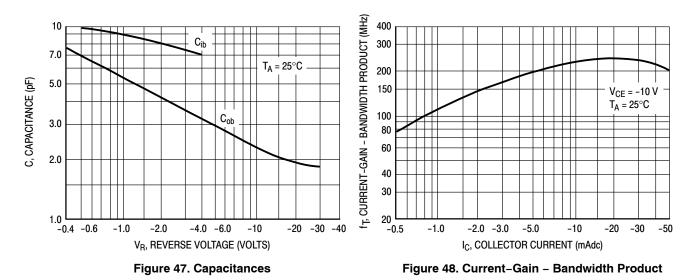

Figure 31. Capacitances

Figure 32. Current–Gain – Bandwidth Product

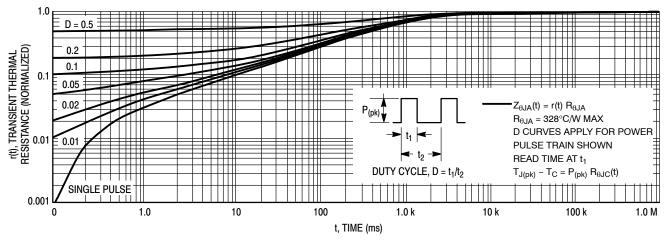


Figure 49. Thermal Response

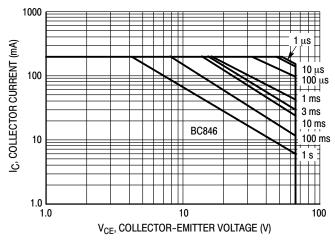
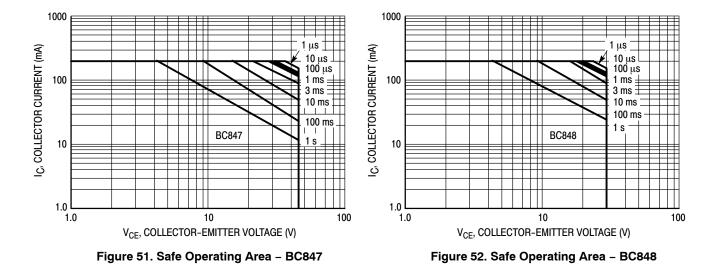
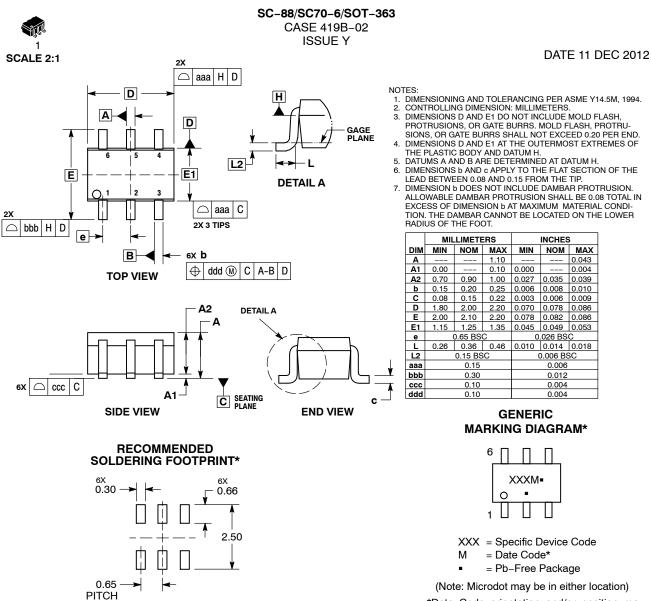



Figure 50. Safe Operating Area – BC846

The safe operating area curves indicate I_C-V_{CE} limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall below the limits indicated by the applicable curve.

The data of Figure 50 is based upon $T_{J(pk)} = 150^{\circ}$ C; T_{C} or T_{A} is variable depending upon conditions. Pulse curves are valid for duty cycles to 10% provided $T_{J(pk)} \le 150^{\circ}$ C. $T_{J(pk)}$ may be calculated from the data in Figure 49. At high case or ambient temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by the secondary breakdown.



0.043

0.004

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DIMENSIONS: MILLIMETERS

*Date Code orientation and/or position may vary depending upon manufacturing location.

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42985B	Electronic versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-88/SC70-6/SOT-363		PAGE 1 OF 2	
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product o ccidental damages. ON Semiconductor does not convey any license under	or guarantee regarding or circuit, and specifically	

SC-88/SC70-6/SOT-363 CASE 419B-02 ISSUE Y

DATE 11 DEC 2012

STYLE 1: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	STYLE 2: CANCELLED	STYLE 3: CANCELLED	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. COLLECTOR 4. EMITTER 5. BASE 6. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE	STYLE 6: PIN 1. ANODE 2 2. N/C 3. CATHODE 1 4. ANODE 1 5. N/C 6. CATHODE 2
STYLE 7: PIN 1. SOURCE 2 2. DRAIN 2 3. GATE 1 4. SOURCE 1 5. DRAIN 1 6. GATE 2	STYLE 8: CANCELLED	STYLE 9: PIN 1. EMITTER 2 2. EMITTER 1 3. COLLECTOR 1 4. BASE 1 5. BASE 2 6. COLLECTOR 2	STYLE 10: PIN 1. SOURCE 2 2. SOURCE 1 3. GATE 1 4. DRAIN 1 5. DRAIN 2 6. GATE 2	STYLE 11: PIN 1. CATHODE 2 2. CATHODE 2 3. ANODE 1 4. CATHODE 1 5. CATHODE 1 6. ANODE 2	STYLE 12: PIN 1. ANODE 2 2. ANODE 2 3. CATHODE 1 4. ANODE 1 5. ANODE 1 6. CATHODE 2
STYLE 13:	STYLE 14:	STYLE 15:	STYLE 16:	STYLE 17:	STYLE 18:
PIN 1. ANODE	PIN 1. VREF	PIN 1. ANODE 1	PIN 1. BASE 1	PIN 1. BASE 1	PIN 1. VIN1
2. N/C	2. GND	2. ANODE 2	2. EMITTER 2	2. EMITTER 1	2. VCC
3. COLLECTOR	3. GND	3. ANODE 3	3. COLLECTOR 2	3. COLLECTOR 2	3. VOUT2
4. EMITTER	4. IOUT	4. CATHODE 3	4. BASE 2	4. BASE 2	4. VIN2
5. BASE	5. VEN	5. CATHODE 2	5. EMITTER 1	5. EMITTER 2	5. GND
6. CATHODE	6. VCC	6. CATHODE 1	6. COLLECTOR 1	6. COLLECTOR 1	6. VOUT1
STYLE 19:	STYLE 20:	STYLE 21:	STYLE 22:	STYLE 23:	STYLE 24:
PIN 1. I OUT	PIN 1. COLLECTOR	PIN 1. ANODE 1	PIN 1. D1 (i)	PIN 1. Vn	PIN 1. CATHODE
2. GND	2. COLLECTOR	2. N/C	2. GND	2. CH1	2. ANODE
3. GND	3. BASE	3. ANODE 2	3. D2 (i)	3. Vp	3. CATHODE
4. V CC	4. EMITTER	4. CATHODE 2	4. D2 (c)	4. N/C	4. CATHODE
5. V EN	5. COLLECTOR	5. N/C	5. VBUS	5. CH2	5. CATHODE
6. V REF	6. COLLECTOR	6. CATHODE 1	6. D1 (c)	6. N/C	6. CATHODE
STYLE 25:	STYLE 26:	STYLE 27:	STYLE 28:	STYLE 29:	STYLE 30:
PIN 1. BASE 1	PIN 1. SOURCE 1	PIN 1. BASE 2	PIN 1. DRAIN	PIN 1. ANODE	PIN 1. SOURCE 1
2. CATHODE	2. GATE 1	2. BASE 1	2. DRAIN	2. ANODE	2. DRAIN 2
3. COLLECTOR 2	3. DRAIN 2	3. COLLECTOR 1	3. GATE	3. COLLECTOR	3. DRAIN 2
4. BASE 2	4. SOURCE 2	4. EMITTER 1	4. SOURCE	4. EMITTER	4. SOURCE 2
5. EMITTER	5. GATE 2	5. EMITTER 2	5. DRAIN	5. BASE/ANODE	5. GATE 1
6. COLLECTOR 1	6. DRAIN 1	6. COLLECTOR 2	6. DRAIN	6. CATHODE	6. DRAIN 1

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

DOCUMENT NUMBER:	98ASB42985B	Electronic versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SC-88/SC70-6/SOT-363		PAGE 2 OF 2		
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconductor	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or icidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically		

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥