ESD/Surge Protection Diode Array

Bi-directional ESD Protection for High-Speed Data Line

SMDA05C Series

The SMDA05C surge protection series is designed to protect equipment attached to up to four high speed communication lines from ESD, EFT and surge.

Features

- SO-8 Package
- Peak Power 300 W 8 x 20 μs
- ESD Rating: IEC 61000-4-2 (ESD) ±15 kV (Air) ±8 kV (Contact) IEC 61000-4-4 (EFT) 40 A (5/50 ns) IEC 61000-4-5 (Surge) 12 A (8/20 μs)
- UL Flammability Rating of 94 V-0
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

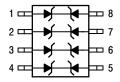
Typical Applications

- High Speed Communication Line Protection
- Data and I/O Lines
- Microprocessor Based Equipment
- LAN/WAN Equipment
- Servers
- Notebook and Desktop PC
- Serial and Parallel Ports
- Peripherals

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Power Dissipation 8 x 20 μ s @ T _A = 25°C (Note 1)	P _{pk}	300	W
Junction and Storage Temperature Range	T _J , T _{stg}	– 55 to +150	°C
Lead Solder Temperature – Maximum 10 Seconds Duration	ΤL	260	°C

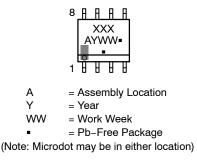
1. Non-repetitive current pulse 8 x 20 µs exponential decay waveform.



ON Semiconductor®

www.onsemi.com

SO-8 ESD AND SURGE PROTECTOR 300 WATTS PEAK POWER



SO-8 CASE 751-07

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 3 of this data sheet.

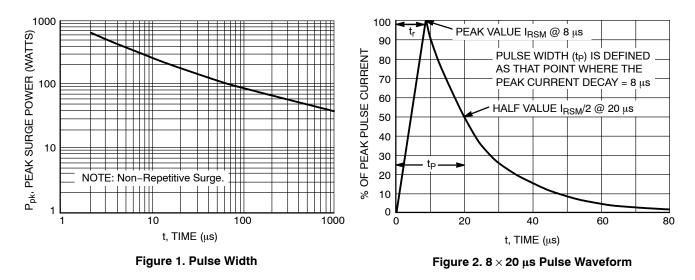
SMDA05C Series

SMDA05C ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Working Voltage	V _{RWM}	-	-	5.0	V
Reverse Breakdown Voltage @ I _t = 1.0 mA	V _{BR}	6.0	-	-	V
Reverse Leakage Current @ V _{RWM} = 5 Volts	I _R	N/A	-	20	μA
Maximum Clamping Voltage @ I_{PP} = 1.0 A, 8 x 20 μ s	V _C	N/A	-	9.8	V
Maximum Clamping Voltage @ I_{PP} = 5.0 A, 8 x 20 μ s	V _C	N/A	-	11	V
Maximum Peak Pulse Current, 8 x 20 μs	I _{PP}	-	-	17	А
Junction Capacitance @ $V_R = 0 V$, f = 1 MHz	CJ	-	-	350	pF

SMDA12C ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Working Voltage	V _{RWM}	-	-	12	V
Reverse Breakdown Voltage @ I _t = 1.0 mA	V _{BR}	13.3	-	-	V
Reverse Leakage Current @ V _{RWM} = 12 Volts	IR	N/A	-	1.0	μΑ
Maximum Clamping Voltage @ I _{PP} = 1.0 A, 8 x 20 μs	V _C	N/A	-	19	V
Maximum Clamping Voltage @ I_{PP} = 5.0 A, 8 x 20 μ s	V _C	N/A	-	24	V
Maximum Peak Pulse Current, 8 x 20 μs	I _{PP}	-	-	12	A
Junction Capacitance @ $V_R = 0 V$, f = 1 MHz	CJ	-	-	120	pF

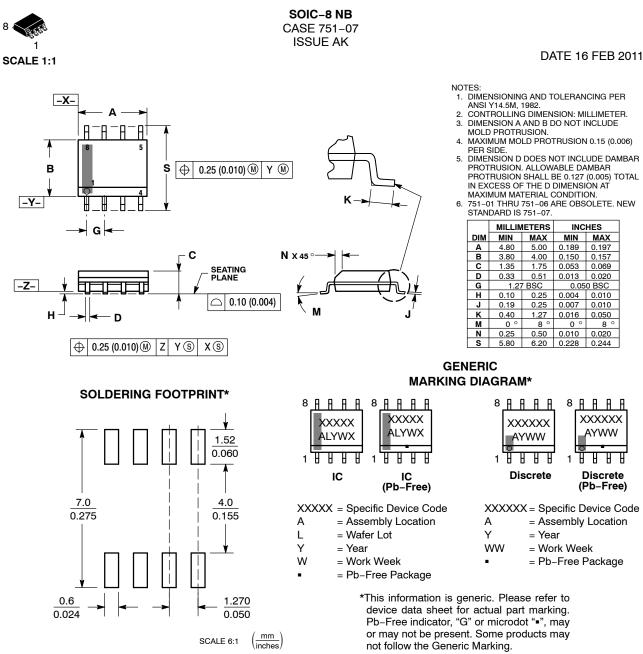

SMDA15C ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Working Voltage	V _{RWM}	-	-	15	V
Reverse Breakdown Voltage @ I _t = 1.0 mA	V _{BR}	16.7	-	-	V
Reverse Leakage Current @ V _{RWM} = 15 Volts	I _R	N/A	-	1.0	μΑ
Maximum Clamping Voltage @ I _{PP} = 1.0 A, 8 x 20 μs	V _C	N/A	-	24	V
Maximum Clamping Voltage @ I_{PP} = 5.0 A, 8 x 20 μ s	V _C	N/A	-	30	V
Maximum Peak Pulse Current, 8 x 20 μs	I _{PP}	-	-	10	A
Junction Capacitance @ $V_R = 0 V$, f = 1 MHz	CJ	-	-	75	pF

SMDA24C ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Working Voltage	V _{RWM}	-	-	24	V
Reverse Breakdown Voltage @ I _t = 1.0 mA	V _{BR}	26.7	-	-	V
Reverse Leakage Current @ V _{RWM} = 24 Volts	I _R	N/A	-	1.0	μΑ
Maximum Clamping Voltage @ I_{PP} = 1.0 A, 8 x 20 μ s	V _C	N/A	-	43	V
Maximum Clamping Voltage @ I_{PP} = 5.0 A, 8 x 20 μs	V _C	N/A	-	55	V
Maximum Peak Pulse Current, 8 x 20 μs	IPP	-	-	5.0	А
Junction Capacitance @ $V_R = 0 V$, f = 1 MHz	CJ	-	-	50	pF

SMDA05C Series



ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
SMDA05CDR2G	AAA	SO–8 (Pb–Free)	2500 / Tape & Reel
SMDA12CDR2G	AAC	SO-8 (Pb-Free)	2500 / Tape & Reel
SMDA15CDR2G	AAD	SO–8 (Pb–Free)	2500 / Tape & Reel
SMDA24CDR2G	AAE	SO-8 (Pb-Free)	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

onsemí

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION: SOIC-8 NB			PAGE 1 OF 2	
the right to make changes without furth purpose, nor does onsemi assume a	er notice to any products herein. onsemi making ny liability arising out of the application or use	LLC dba onsemi or its subsidiaries in the United States and/or other cour es no warranty, representation or guarantee regarding the suitability of its pr of any product or circuit, and specifically disclaims any and all liability, inc e under its patent rights nor the rights of others.	roducts for any particular	

SOIC-8 NB CASE 751-07 ISSUE AK

STYLE 1: PIN 1. EMITTER COLLECTOR 2. 3. COLLECTOR 4. EMITTER 5. EMITTER BASE 6. 7 BASE EMITTER 8. STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN DRAIN 4. GATE 5. 6. GATE SOURCE 7. 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 COLLECTOR, DIE #2 2. З. EMITTER, COMMON 4. 5. EMITTER, COMMON 6 BASE. DIE #2 BASE, DIE #1 7. 8 EMITTER, COMMON STYLE 13: PIN 1. N.C. 2. SOURCE 3 GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. DRAIN 8. STYLE 17: PIN 1. VCC 2. V2OUT V10UT З. TXE 4. 5. RXE 6. VFF 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3 CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7. CATHODE 6 8. STYLE 25: PIN 1. VIN 2 N/C REXT З. 4. GND 5. IOUT IOUT 6. IOUT 7. 8. IOUT STYLE 29: BASE, DIE #1 PIN 1. 2 EMITTER, #1 BASE, #2 З. EMITTER, #2 4. 5 COLLECTOR, #2 COLLECTOR, #2 6.

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 COLLECTOR, #2 3. COLLECTOR, #2 4 BASE, #2 5. EMITTER, #2 6. 7 BASE #1 EMITTER, #1 8. STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN SOURCE 4. SOURCE 5. 6. GATE GATE 7. 8. SOURCE STYLE 10: GROUND PIN 1. BIAS 1 OUTPUT 2. З. GROUND 4. 5. GROUND 6 BIAS 2 INPUT 7. 8. GROUND STYLE 14: N-SOURCE PIN 1. 2. N-GATE 3 P-SOURCE P-GATE 4. P-DRAIN 5 6. P-DRAIN N-DRAIN 7. N-DRAIN 8. STYLE 18: PIN 1. ANODE ANODE 2. SOURCE 3. GATE 4. 5. DRAIN 6 DRAIN CATHODE 7. CATHODE 8. STYLE 22 PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3 COMMON CATHODE/VCC 4. I/O LINE 3 COMMON ANODE/GND 5. 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND STYLE 26: PIN 1. GND 2 dv/dt З. ENABLE 4. ILIMIT 5. SOURCE SOURCE 6. SOURCE 7. 8. VCC STYLE 30: DRAIN 1 PIN 1. DRAIN 1 2 GATE 2 З. SOURCE 2 4 SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5. 6.

STYLE 3: DRAIN, DIE #1 PIN 1. DRAIN, #1 2. DRAIN, #2 З. DRAIN, #2 4. 5. GATE, #2 SOURCE, #2 6. 7 GATE #1 8. SOURCE, #1 STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS THIRD STAGE SOURCE GROUND З. 4. 5. DRAIN 6. GATE 3 SECOND STAGE Vd 7. FIRST STAGE Vd 8. STYLE 11: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. З. GATE 2 4. 5. DRAIN 2 6. DRAIN 2 DRAIN 1 7. 8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3 ANODE 1 ANODE 1 4. 5. CATHODE, COMMON CATHODE, COMMON CATHODE, COMMON 6. 7. CATHODE, COMMON 8. STYLE 19: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. **MIRROR 1** STYLE 23: PIN 1. LINE 1 IN COMMON ANODE/GND COMMON ANODE/GND 2. 3 LINE 2 IN 4. LINE 2 OUT 5. COMMON ANODE/GND COMMON ANODE/GND 6. 7. 8. LINE 1 OUT STYLE 27: PIN 1. ILIMIT OVI O 2 З. UVLO 4. INPUT+ 5. 6. SOURCE SOURCE SOURCE 7. 8 DRAIN

DATE 16 FEB 2011

STYLE 4: PIN 1. 2. ANODE ANODE ANODE З. 4. ANODE ANODE 5. 6. ANODE 7 ANODE COMMON CATHODE 8. STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 З. BASE #2 COLLECTOR, #2 4. COLLECTOR, #2 5. 6. EMITTER, #2 EMITTER, #1 7. 8. COLLECTOR, #1 STYLE 12: PIN 1. S SOURCE SOURCE 2. 3. GATE 4. 5. DRAIN 6 DRAIN DRAIN 7. 8. DRAIN STYLE 16 EMITTER, DIE #1 PIN 1. 2. BASE, DIE #1 EMITTER DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. COLLECTOR, DIE #1 8. STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3. 4. GATE (P) 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 24: PIN 1. BASE EMITTER 2. 3 COLLECTOR/ANODE COLLECTOR/ANODE 4. 5. CATHODE 6. CATHODE COLLECTOR/ANODE 7. COLLECTOR/ANODE 8. STYLE 28: 11. SW_TO_GND 2. DASIC OFF PIN 1. DASIC_SW_DET З. 4. GND 5. 6. V MON VBULK 7. VBULK 8 VIN

DOCUMENT NUMBER:	98ASB42564B Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2		
onsemi and ONSEMi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves					

SOURCE 1/DRAIN 2

7.

8. GATE 1

the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **Onsemi** does not convey any license under its patent rights of others.

7.

8

COLLECTOR, #1

COLLECTOR, #1

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters, including "Typicals" must be validated for each customer applications by customer's technical experts. onsemi does not cust performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application or autorized for use as a critical component in life support systems or any CDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any divide for indirectly, any claim of personal injury or death associated with such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and is officers, employees, subsidiaries, and expenses, and expenses, and exponses hard snegges that onsemi was negligent regarding the design or unauthorized use ever if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright have and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥