One Watt High Current Transistors

PNP Silicon

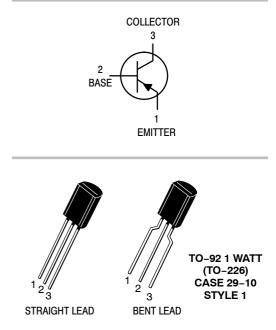
Features

• These Devices are Pb-Free and are RoHS Compliant*

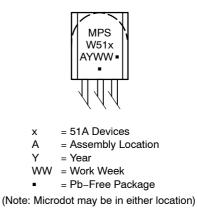
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector – Emitter Voltage MPSW51 MPSW51A	V _{CEO}	-30 -40	Vdc
Collector – Base Voltage MPSW51 MPSW51A	V _{CBO}	-40 -50	Vdc
Emitter – Base Voltage	V_{EBO}	-5.0	Vdc
Collector Current – Continuous	Ι _C	-1000	mAdc
Total Device Dissipation @ $T_A = 25^{\circ}C$ Derate above 25°C	P _D	1.0 8.0	mW mW/°C
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above 25°C	PD	2.5 20	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	125	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	50	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.



ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

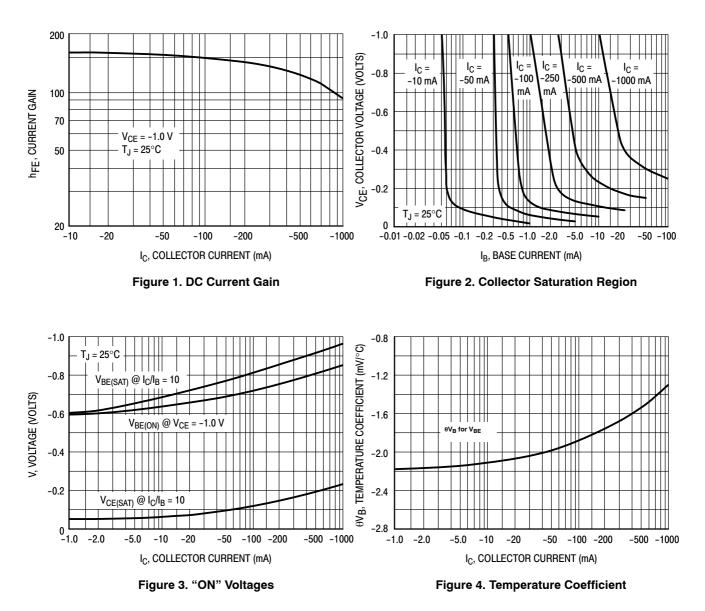
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MPSW51, MPSW51A

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage (Note 1) ($I_C = -1.0$ mAdc, $I_B = 0$)	MPSW51 MPSW51A	V _{(BR)CEO}	-30 -40		Vdc
Collector – Base Breakdown Voltage $(I_C = -100 \ \mu Adc, I_E = 0)$	MPSW51 MPSW51A	V _{(BR)CBO}	-40 -50		Vdc
Emitter – Base Breakdown Voltage ($I_E = -100 \ \mu$ Adc, $I_C = 0$)		V _{(BR)EBO}	-5.0	-	Vdc
	MPSW51 MPSW51A	Ісво		-0.1 -0.1	μAdc
Emitter Cutoff Current ($V_{EB} = -3.0 \text{ Vdc}, I_C = 0$)		I _{EBO}	-	-0.1	μAdc
ON CHARACTERISTICS					
$ \begin{array}{l} \text{DC Current Gain} \\ (I_{C} = -10 \text{ mAdc}, \text{ V}_{CE} = -1.0 \text{ Vdc}) \\ (I_{C} = -100 \text{ mAdc}, \text{ V}_{CE} = -1.0 \text{ Vdc}) \\ (I_{C} = -1000 \text{ mAdc}, \text{ V}_{CE} = -1.0 \text{ Vdc}) \end{array} $		h _{FE}	55 60 50	- - -	-
Collector – Emitter Saturation Voltage (I _C = –1000 mAdc, I _B = –100 mAdc)		V _{CE(sat)}	-	-0.7	Vdc
Base – Emitter On Voltage (I _C = -1000 mAdc, V _{CE} = -1.0 Vdc)		V _{BE(on)}	-	-1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current–Gain – Bandwidth Product ($I_C = -50$ mAdc, $V_{CE} = -10$ Vdc, f = 20 MHz)		f _T	50	-	MHz
Output Capacitance (V _{CB} = -10 Vdc, I _E = 0, f = 1.0 MHz)		C _{obo}	_	30	pF

1. Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle \leq 2.0%.


ORDERING INFORMATION

Device	Package	Shipping [†]
MPSW51G	TO-92 (Pb-Free)	5000 Units / Bulk
MPSW51AG	TO-92 (Pb-Free)	5000 Units / Bulk
MPSW51RLRAG	TO-92 (Pb-Free)	2000 / Tape & Reel
MPSW51ARLRAG	TO-92 (Pb-Free)	2000 / Tape & Reel
MPSW51ARLRPG	TO-92 (Pb-Free)	2000 / Ammo Pack

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MPSW51, MPSW51A

TYPICAL CHARACTERISTICS

MPSW51, MPSW51A

TYPICAL CHARACTERISTICS

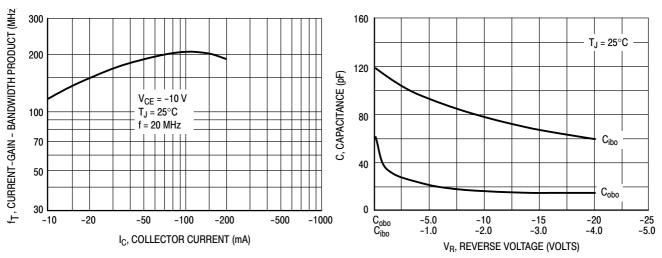
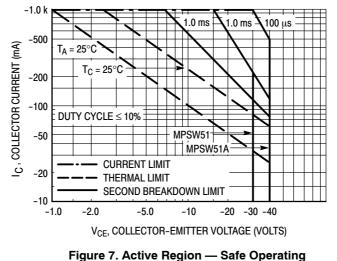
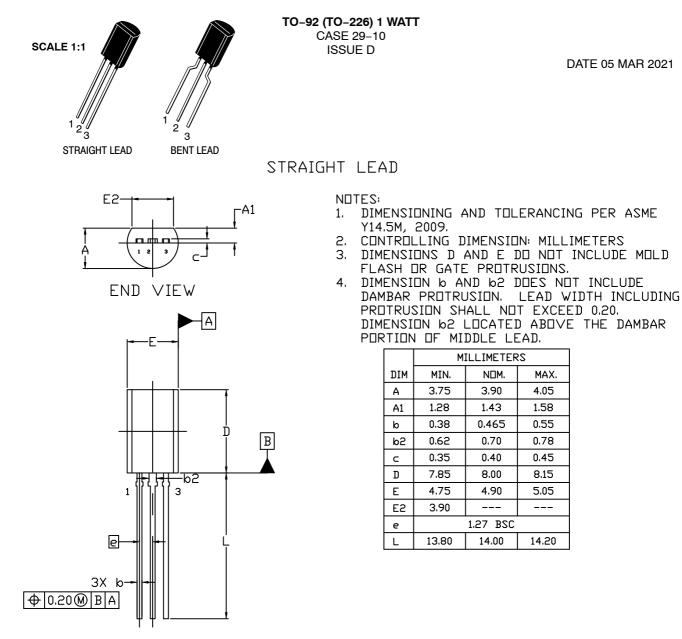



Figure 5. Current Gain — Bandwidth Product

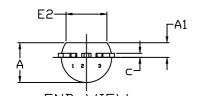

Figure 6. Capacitance

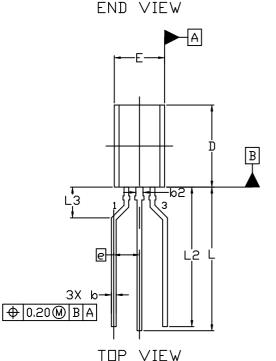
Årea

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

TOP VIEW

STYLES AND MARKING ON PAGE 3


DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	CRIPTION: TO-92 (TO-226) 1 WATT PAGE 1 O		PAGE 1 OF 3	
the suitability of its products for any pa	articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or incidental damages. ON Semiconductor does not convey any license under	r circuit, and specifically	



TO-92 (TO-226) 1 WATT CASE 29-10 ISSUE D

DATE 05 MAR 2021

FORMED LEAD

NDTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION MILLIMETERS
- 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS.
- 4. DIMENSION b AND b2 DOES NOT INCLUDE DAMBAR PROTRUSION. LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 0.20. DIMENSION b2 LOCATED ABOVE THE DAMBAR PORTION OF MIDDLE LEAD.

	MILLIMETERS			
DIM	MIN.	NDM.	MAX.	
Α	3.75	3.90	4.05	
A1	1.28	1.43	1.58	
Q	0.38	0.465	0.55	
b2	0.62	0.70	0.78	
C	0.35	0.40	0.45	
D	7.85	8.00	8.15	
E	4.75	4.90	5.05	
E2	3.90			
e		2.50 BSC		
L	13.80	14.00	14.20	
L2	13.20	13.60	14.00	
L3	3.00 REF			

STYLES AND MARKING ON PAGE 3

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 2 OF 3	
the suitability of its products for any pa	articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or acidental damages. ON Semiconductor does not convey any license under	r circuit, and specifically	

TO-92 (TO-226) 1 WATT CASE 29-10 ISSUE D

DATE 05 MAR 2021

2.	EMITTER BASE COLLECTOR	Style Pin	2: 1. 2. 3.	E
'LE 6: PIN 1. 2. 3.		STYLE Pin	7: 1. 2. 3.	۵
2.	ANODE CATHODE & ANODE CATHODE	STYLE PIN	12: 1. 2. 3.	0
2.	ANODE GATE CATHODE	STYLE Pin	17: 1. 2. 3.	E
2.	COLLECTOR EMITTER BASE	Style Pin	22: 1. 2. 3.	9
'LE 26: PIN 1. 2. 3.	GROUND 2	Style Pin	27: 1. 2. 3.	5
'LE 31: PIN 1. 2. 3.	DRAIN	STYLE Pin	32: 1. 2. 3.	E C E

BASE EMITTER COLLECTOR	STYL PI
SOURCE DRAIN GATE	STYL Pi
Main Terminal 1 Gate Main Terminal 2	STYL Pi
COLLECTOR BASE EMITTER	STYL PI
SOURCE GATE DRAIN	STYL Pi
MT SUBSTRATE MT	STYL PI
BASE COLLECTOR EMITTER	STYL Pi

YLE PIN	1. 2.	ANODE ANODE CATHODE
YLE PIN	1. 2.	DRAIN GATE SOURCE & SUBSTRATE
YLE PIN	1. 2.	ANODE 1 GATE CATHODE 2
YLE PIN	1. 2.	ANODE CATHODE NOT CONNECTED
YLE PIN	1. 2.	GATE SOURCE DRAIN
YLE PIN	1. 2.	CATHODE ANODE GATE
YLE Pin	1. 2.	RETURN INPUT OUTPUT

2.	CATHODE CATHODE ANODE	Style Pin	5: 1. 2. 3.	SOURCE
2.	BASE 1 EMITTER BASE 2	Style Pin	1. 2.	CATHODE GATE ANODE
2.	EMITTER COLLECTOR BASE	Style Pin	1. 2.	ANODE 1 CATHODE ANODE 2
		Style Pin	20: 1. 2. 3.	
2.	EMITTER COLLECTOR/ANODE CATHODE	Style Pin		
2.	NOT CONNECTED ANODE CATHODE	Style Pin	30: 1. 2. 3.	GATE
STYLE 34: PIN 1. 2. 3.	INPUT	Style Pin		GATE COLLECTO EMITTER

YLE 10: PIN 1. CATHODE 2. GATE 3. ANODE YLE 15: PIN 1. ANODE 1 2. CATHODE 3. ANODE 2 YLE 20: PIN 1. NOT CONNECTED 2. CATHODE 3. ANODE YLE 25: PIN 1. MT 1 2. GATE 3. MT 2 YLE 30: PIN 1. DRAIN GATE
SOURCE YLE 35: PIN 1. GATE 2. COLLECTOR 3. EMITTER

GENERIC **MARKING DIAGRAM***

XXXXX XXXXX ALYW-.

XXXX = Specific Device Code

- = Assembly Location А
- = Wafer Lot L
- Y = Year
- W = Work Week
 - = Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DESCRIPTION: TO-92 (TO-226) 1 WATT		PAGE 3 OF 3	
the suitability of its products for any pa	articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product of cidental damages. ON Semiconductor does not convey any license under	r circuit, and specifically	

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclorating, or solication of use products for any particular purpose, not occes of series assume any maturing ansing on series of the application of use of any product or circuit, and specifically disclorations any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others, onsemi products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death Associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥