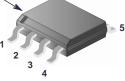


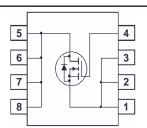
Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.


ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is and its officers, employees, even if such claim any manner.


FAIRCHILD SEMICONDUCTOR® FDS3682	September 2002	FDS3682
N-Channel PowerTrench [®] MOSFET 100V, 6A, 35m Ω		
Features	Applications	
• $r_{DS(ON)} = 30m\Omega$ (Typ.), $V_{GS} = 10V$, $I_D = 6A$	DC/DC converters and Off-Line UPS	
• Q _g (tot) = 19nC (Typ.), V _{GS} = 10V	Distributed Power Architectures and VRMs	
Low Miller Charge	 Primary Switch for 24V and 48V Systems 	
 Low Q_{RR} Body Diode Optimized efficiency at high frequencies 	High Voltage Synchronous Rectifier	

- UIS Capability (Single Pulse and Repetitive Pulse)
- Direct Injection / Diesel Injection Systems
- 42V Automotive Load Control
- Electronic Valve Train Systems

Formerly developmental type 82755

SO-8 MOSFET Maximum Ratings $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Ratings	Units	
V _{DSS}	Drain to Source Voltage	100	V	
V _{GS}	Gate to Source Voltage	±20	V	
	Drain Current			
	Continuous (T _A = 25 ^o C, V _{GS} = 10V, R _{θJA} = 50 ^o C/W)	6.0	А	
I _D	Continuous (T _A = 100°C, V _{GS} = 10V, R _{θJA} = 50°C/W)	3.7	A	
	Pulsed	Figure 4	A	
E _{AS}	Single Pulse Avalanche Energy (Note 1)	156	mJ	
D	Power dissipation	2.5	W	
P _D	Derate above 25°C	20	mW/ºC	
T _J , T _{STG}	Operating and Storage Temperature	-55 to 150	°C	

Thermal Characteristics

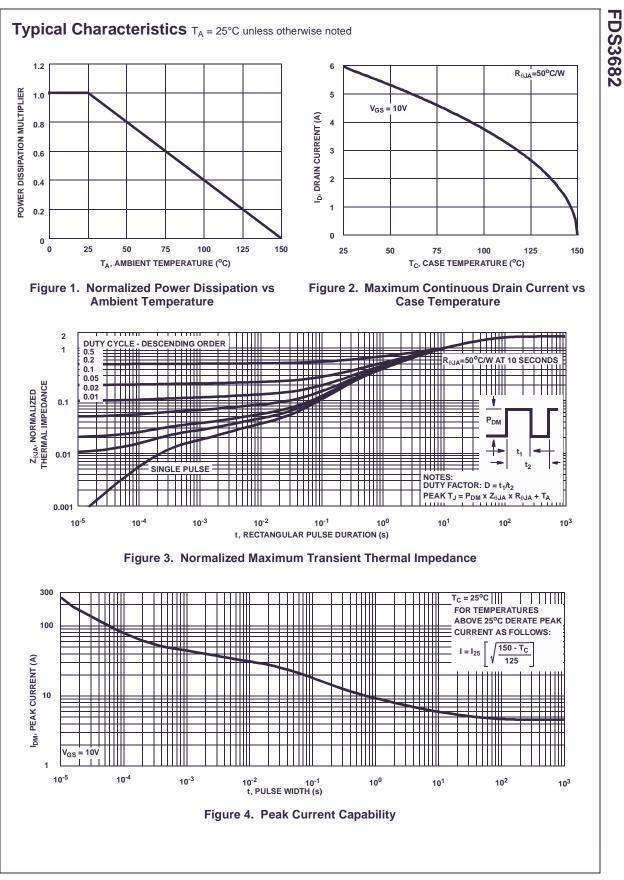
R_{\thetaJA}	Thermal Resistance, Junction to Ambient at 10 seconds (Note 3)	50	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient at 1000 seconds (Note 3)	80	°C/W
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction to Case (Note 2)	25	°C/W

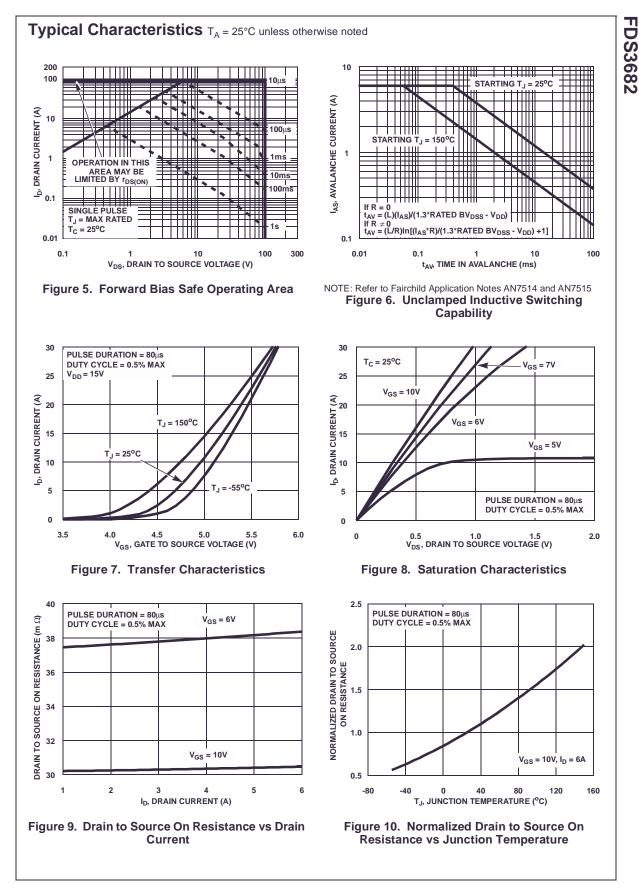
Package Marking and Ordering Information

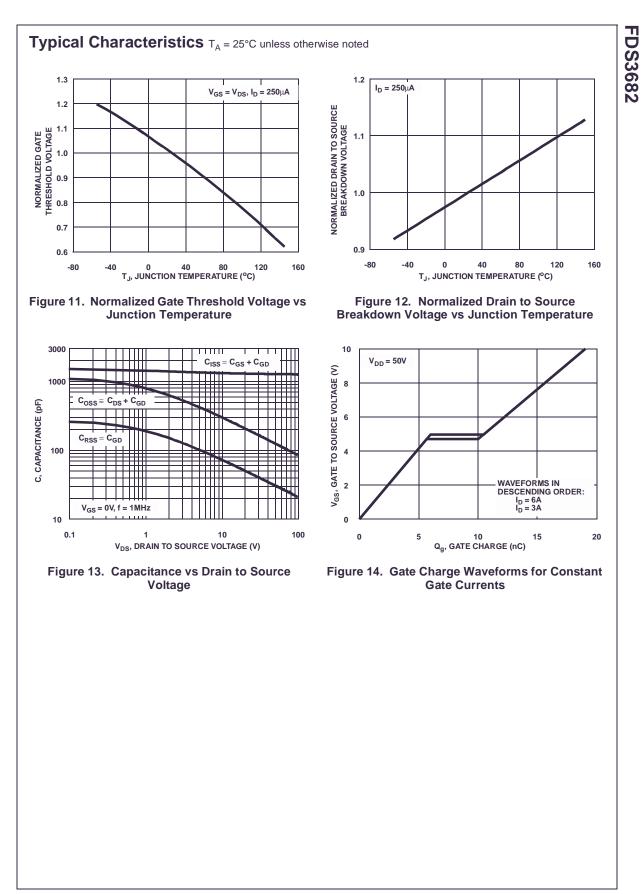
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDS3682	FDS3682	SO-8	330mm	12mm	2500 units

Symbol	Parameter	Test Cond	itions	Min	Тур	Max	Units
Off Chara	cteristics						
B _{VDSS}	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS} :	= 0V	100	-	-	V
		V _{DS} = 80V		-	-	1	•
I _{DSS}	Zero Gate Voltage Drain Current	$V_{GS} = 0V$	$T_{C} = 150^{\circ}C$	-	-	250	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V$		-	-	±100	nA
On Chara	cteristics	·	· · · · ·				
V _{GS(TH)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 2$	250μΑ	2	-	4	V
. ,	Drain to Source On Resistance	I _D = 6A, V _{GS} = 10		-	0.030	0.035	
r		$I_{D} = 3A, V_{GS} = 6V$		-	0.038	0.057	Ω
rds(ON)		$I_D = 6A, V_{GS} = 1$ $T_C = 150^{\circ}C$	0V,	-	0.060	0.070	22
Dynamic	Characteristics						
C _{ISS}	Input Capacitance		o) /	-	1300	-	pF
C _{OSS}	Output Capacitance	── V _{DS} = 25V, V _{GS} = ── f = 1MHz	= 0V,	-	190	-	pF
C _{RSS}	Reverse Transfer Capacitance	1 = 1101112		-	45	-	pF
Q _{g(TOT)}	Total Gate Charge at 10V	$V_{GS} = 0V$ to 10V		-	19	25	nC
Q _{g(TH)}	Threshold Gate Charge	$V_{GS} = 0V$ to 2V	V _{DD} = 50V	-	2.4	3.2	nC
Q _{gs}	Gate to Source Gate Charge		I _D = 6A	-	6.0	-	nC
Q _{gs2}	Gate Charge Threshold to Plateau		I _g = 1.0mA		3.6	-	nC
Q _{gd}	Gate to Drain "Miller" Charge			-	4.5	-	nC
	Switching Characteristics (V _G	_S = 10V)					
t _{ON}	Turn-On Time			-	-	71	ns
t _{d(ON)}	Turn-On Delay Time			-	12	-	ns
t _r	Rise Time	V _{DD} = 50V, I _D = 6A		-	35	_	ns

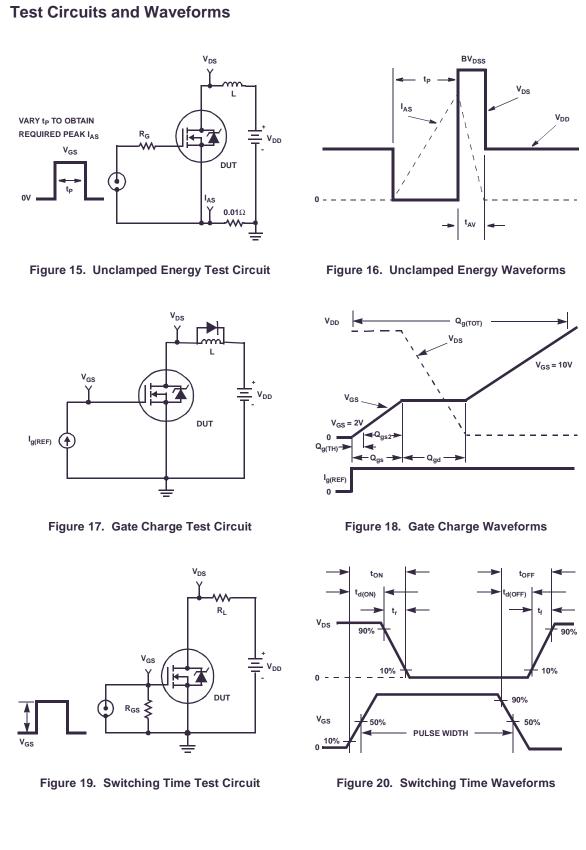
	_					
t _{ON}	Turn-On Time		-	-	71	ns
t _{d(ON)}	Turn-On Delay Time		-	12	-	ns
t _r	Rise Time	$V_{DD} = 50V, I_{D} = 6A$	-	35	-	ns
t _{d(OFF)}	Turn-Off Delay Time	$V_{GS} = 10V, R_{GS} = 16\Omega$	-	34	-	ns
t _f	Fall Time		-	37	-	ns
t _{OFF}	Turn-Off Time		-	-	107	ns


Drain-Source Diode Characteristics


V _{SD}	Source to Drain Diode Voltage	$I_{SD} = 6A$	-	-	1.25	V
		I _{SD} = 3A	-	-	1.0	V
t _{rr}	Reverse Recovery Time	$I_{SD} = 6A$, $dI_{SD}/dt = 100A/\mu s$	-	-	50	ns
Q _{RR}	Reverse Recovered Charge	$I_{SD} = 6A$, $dI_{SD}/dt = 100A/\mu s$	-	-	75	nC


Notes:
1: Starting T_J = 25°C, L = 8.7mH, I_{AS} = 6A.
2: R_{θJA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal referance is defined as the solder mounting surface of the drain pins. R_{θJC} is guaranteed by design while R_{θCA} is determined by the user's board design.

©2002 Fairchild Semiconductor Corporation


FDS3682

Thermal Resistance vs. Mounting Pad Area

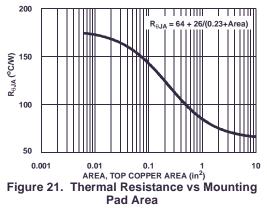
The maximum rated junction temperature, T_{JM} , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P_{DM} , in an application. Therefore the application's ambient temperature, T_A (°C), and thermal resistance $R_{\theta JA}$ (°C/W) must be reviewed to ensure that T_{JM} is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.

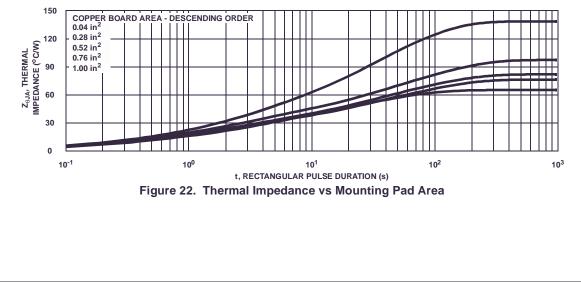
$$P_{DM} = \frac{(T_{JM} - T_A)}{R_{\theta JA}}$$
(EQ. 1)

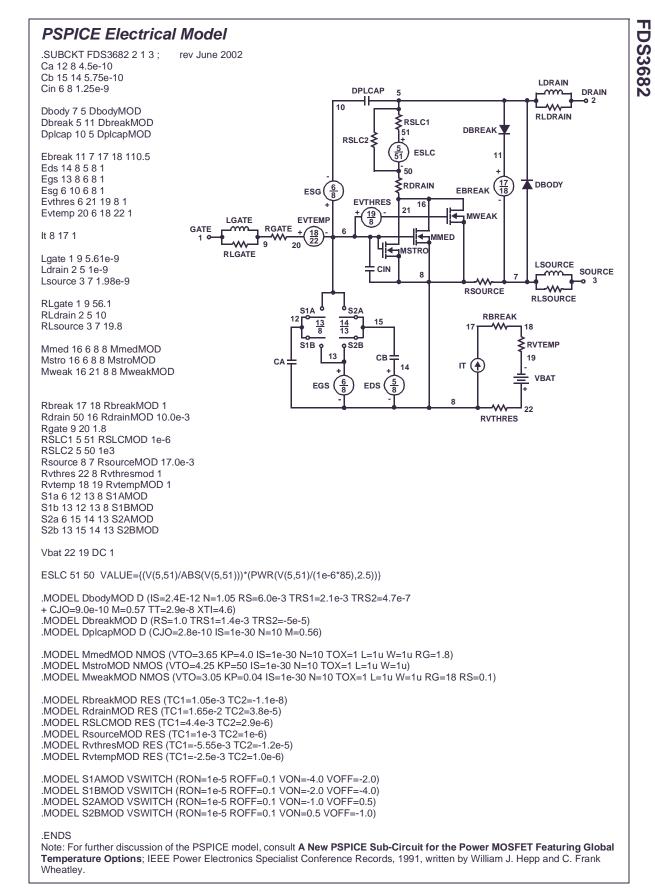
In using surface mount devices such as the SO8 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of P_{DM} is complex and influenced by many factors:

- Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
- 2. The number of copper layers and the thickness of the board.
- 3. The use of external heat sinks.
- 4. The use of thermal vias.
- 5. Air flow and board orientation.
- 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.

Fairchild provides thermal information to assist the designer's preliminary application evaluation. Figure 21 defines the $R_{\theta,JA}$ for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized


maximum transient thermal impedance curve.


Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2. The area, in square inches is the top copper area including the gate and source pads.


$$R_{\theta JA} = 64 + \frac{26}{0.23 + Area}$$
 (EQ. 2)

The transient thermal impedance $(Z_{\theta,JA})$ is also effected by varied top copper board area. Figure 22 shows the effect of copper pad area on single pulse transient thermal impedance. Each trace represents a copper pad area in square inches corresponding to the descending list in the graph. Spice and SABER thermal models are provided for each of the listed pad areas.

Copper pad area has no perceivable effect on transient thermal impedance for pulse widths less than 100ms. For pulse widths less than 100ms the transient thermal impedance is determined by the die and package. Therefore, CTHERM1 through CTHERM5 and RTHERM1 through RTHERM5 remain constant for each of the thermal models. A listing of the model component values is available in Table 1.

DS3682

LDRAIN

m

RI DRAIN

DBODY

LSOURCE

~~~

RLSOURCE

18

19

22

₹RVTEMP

VBAT

DRAIN

SOURCE

3 o

02

DPLCAP

RSI C2

EVTHRES

<u>19</u> 8

10

<u>6</u> 8

ESG(

EVTEMP

<u>13</u> 8

S1B

<u>14</u> 13

6 EGS

o S2B 13

+  $\begin{pmatrix} 18\\ 22 \end{pmatrix}$ 

20

RGATE

CA

٩

5

ERSLC1

DBREAK

MWEAK

EBREAK

RSOURCE

17

IT

8

11

RBREAK

RVTHRES

51

50

21

MSTRO

CIN

15

СВ

EDS 5 14

€RDRAIN

16

8

MMED

Ð ISCL

#### REV June 2002 template FDS3682 n2,n1,n3 electrical n2,n1,n3 var i iscl dp..model dbodymod = (isl=2.4e-12,nl=1.05,rs=6.0e-3,trs1=2.1e-3,trs2=4.7e-7,cjo=9.0e-10,m=0.57,tt=2.9e-8,xti=4.6) dp..model dbreakmod = (rs=1.0.trs1=1.4e-3.trs2=-5e-5)dp..model dplcapmod = (cjo=2.8e-10,isl=10e-30,nl=10,m=0.56) m..model mmedmod = (type=\_n,vto=3.65,kp=4.0,is=1e-30, tox=1) m..model mstrongmod = (type=\_n,vto=4.25,kp=50,is=1e-30, tox=1) m..model mweakmod = $(type=_n, vto=3.05, kp=0.04, is=1e-30, tox=1, rs=0.1)$ sw\_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4.0,voff=-2.0) sw\_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-2.0,voff=-4.0) sw\_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-1.0,voff=0.5)

sw\_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=0.5,voff=-1.0)

c.cin n6 n8 = 1.25e-9 dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod spe.ebreak n11 n7 n17 n18 = 110.5 LGATE spe.eds n14 n8 n5 n8 = 1 GATE  $\sim$ spe.egs n13 n8 n6 n8 = 1 ~~~ spe.esg n6 n10 n6 n8 = 1 RLGATE spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1

SABER Electrical Model

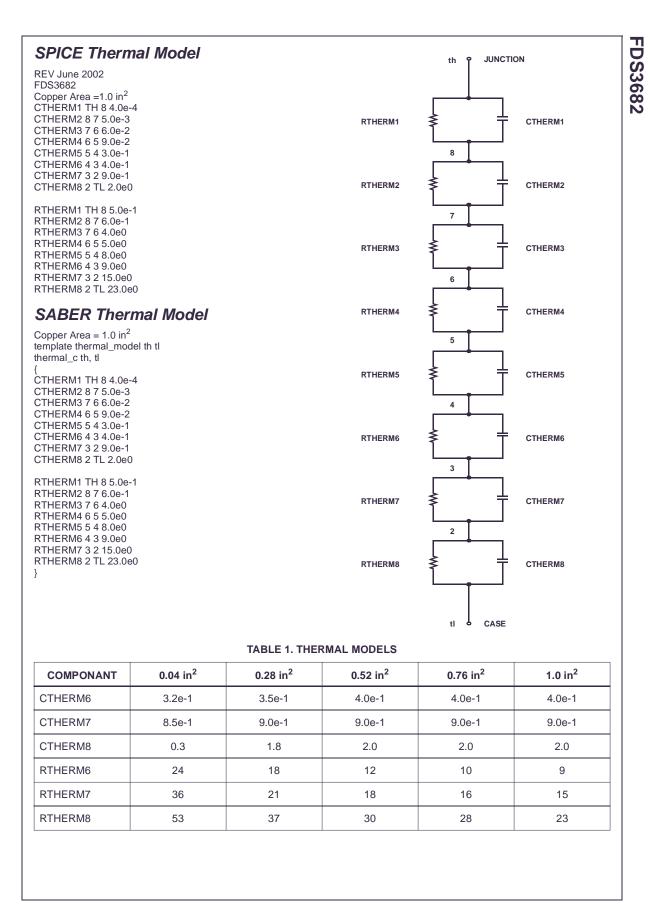
i.it n8 n17 = 1

l.lgate n1 n9 = 5.61e-9 I.Idrain n2 n5 = 1e-9l.lsource n3 n7 = 1.98e-9

c.ca n12 n8 = 4.5e-10

c.cb n15 n14 = 5.75e-10

res.rlgate n1 n9 = 56.1 res.rldrain n2 n5 = 10 res.rlsource n3 n7 = 19.8


m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u

res.rbreak n17 n18 = 1, tc1=1.05e-3,tc2=-1.1e-8 res.rdrain n50 n16 = 10.0e-3, tc1=1.65e-2,tc2=3.8e-5 res.rgate n9 n20 = 1.8res.rslc1 n5 n51 = 1e-6, tc1=4.4e-3,tc2=2.9e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 17.0e-3, tc1=1e-3,tc2=1e-6 res.rvthres n22 n8 = 1, tc1=-5.55e-3,tc2=-1.2e-5 res.rvtemp n18 n19 = 1. tc1=-2.5e-3.tc2=1.0e-6 sw\_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw\_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw\_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw\_vcsp.s2b n13 n15 n14 n13 = model=s2bmod

v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))\*((abs(v(n5,n51)\*1e6/85))\*\*2.5)))}

©2002 Fairchild Semiconductor Corporation

Downloaded from Arrow.com.



#### TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

|                                     | FACT <sup>™</sup><br>FACT Quiet Series <sup>™</sup><br>FAST <sup>®</sup><br>FAST <sup>™</sup><br>FRFET <sup>™</sup><br>GlobalOptoisolator <sup>™</sup><br>GTO <sup>™</sup><br>HiSeC <sup>™</sup><br>I <sup>2</sup> C <sup>™</sup><br>Around the world. <sup>™</sup> | ImpliedDisconnect <sup>™</sup><br>ISOPLANAR <sup>™</sup><br>LittleFET <sup>™</sup><br>MicroFET <sup>™</sup><br>MiCrOPak <sup>™</sup><br>MICROWIRE <sup>™</sup><br>MSX <sup>™</sup><br>MSXPro <sup>™</sup><br>OCX <sup>™</sup><br>OCXPro <sup>™</sup><br>OPTOLOGIC <sup>®</sup> | PACMAN <sup>™</sup><br>POP <sup>™</sup><br>Power247 <sup>™</sup><br>PowerTrench <sup>®</sup><br>QFET <sup>™</sup><br>QS <sup>™</sup><br>QT Optoelectronics <sup>™</sup><br>Quiet Series <sup>™</sup><br>RapidConfigure <sup>™</sup><br>RapidConnect <sup>™</sup><br>SILENT SWITCHER <sup>®</sup> | SPM <sup>™</sup><br>Stealth <sup>™</sup><br>SuperSOT <sup>™</sup> -3<br>SuperSOT <sup>™</sup> -6<br>SuperSOT <sup>™</sup> -8<br>SyncFET <sup>™</sup><br>TinyLogic <sup>™</sup><br>TruTranslation <sup>™</sup><br>UHC <sup>™</sup><br>UltraFET <sup>®</sup><br>VCX <sup>™</sup> |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The Power Franch<br>Programmable Ac | nise™                                                                                                                                                                                                                                                               | OPTOLOGIC <sup>®</sup><br>OPTOPLANAR™                                                                                                                                                                                                                                          | SILENT SWITCHER <sup>®</sup><br>SMART START™                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                |

#### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

#### As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

#### PRODUCT STATUS DEFINITIONS Definition of Terms

| Datasheet Identification | Product Status            | Definition                                                                                                                                                                                                                        |
|--------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance Information      | Formative or In<br>Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                                                |
| Preliminary              | First Production          | This datasheet contains preliminary data, and<br>supplementary data will be published at a later date.<br>Fairchild Semiconductor reserves the right to make<br>changes at any time without notice in order to improve<br>design. |
| No Identification Needed | Full Production           | This datasheet contains final specifications. Fairchild<br>Semiconductor reserves the right to make changes at<br>any time without notice in order to improve design.                                                             |
| Obsolete                 | Not In Production         | This datasheet contains specifications on a product<br>that has been discontinued by Fairchild semiconductor.<br>The datasheet is printed for reference information only.                                                         |

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.