

VNI2140

Dual high side smart power solid state relay

Datasheet - production data

Features

- Nominal current: 0.5 A per channel
- Shorted-load protections
- Junction overtemperature protection
- Case overtemperature protection for thermal independence of the channels
- Thermal case shutdown restart not simultaneous for the various channels
- Protection against loss of ground
- Current limitation 1 A per channel
- Undervoltage shutdown
- Open-load in off-state and short to V_{CC}
 detection
- Open-drain diagnostic outputs
- 3.3 V CMOS/TTL compatible inputs
- · Fast demagnetization of inductive loads
- Conforms to IEC 61131-2

Description

The VNI2140J is a monolithic device designed using STMicroelectronics' VIPower technology. The device drives two independent resistive or inductive loads with one side connected to ground. Active current limitation prevents a drop in system power supply in cases of shorted-load, and built-in thermal shutdown protects the chip from damage due to overtemperature and shortcircuit. In overload conditions, channel turns OFF and ON automatically to maintain the junction temperature between TTSD and TR. If the case temperature reaches TCSD, the overloaded channel is turned OFF and restarts only when case temperature decreases down to TCR. In order to avoid high-peak current from the supply, when more than one channel is overloaded the TCSD restart is not simultaneous. Non overloaded channels continue to operate normally. The open-drain diagnostics output indicates overtemperature conditions and openload in off state.

Table 1. Device summary

Order codes	Package	Packaging
VNI2140J	PowerSSO-12™	Tube
VNI2140JTR	1 000012	Tape and reel

Table 2. Main features

Туре	V _{demag} ⁽¹⁾	R _{DSon} ⁽¹⁾	I _{out} ⁽¹⁾	v _{cc}
VNI2140J	V _{CC} -45 V	0.08 Ω	1 A ⁽²⁾	45 V

1. Per channel.

2. Current limitation.

This is information on a product in full production.

Contents

1	Block diagram
2	Pin connections
3	Maximum ratings 5 Thermal data. 5
4	Electrical characteristics
5	Truth table
6	Switching waveforms
7	Open-load
8	Package and PCB thermal data 15
9	Reverse polarity protection
10	Package information1910.1PowerSSO-12™ package information19
11	Revision history

1 Block diagram

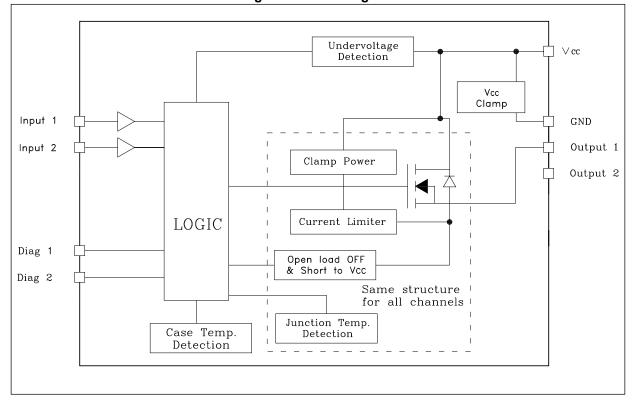
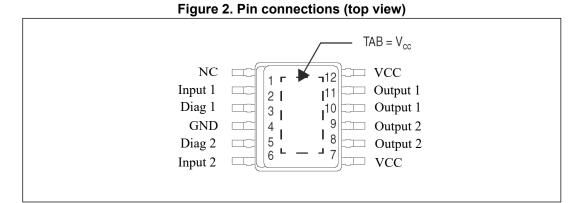



Figure 1. Block diagram

Pin connections 2

No.	Name	Description
1	NC	Not connected
2	Input 1	Channel 1 input 3.3 V CMOS/TTL compatible
3	Diag 1	Channel 1 diagnostic in open-drain configuration
4	GND	Device ground connection
5	Diag 2	Channel 2 diagnostic in open-drain configuration
6	Input 2	Channel 2 input 3.3 V CMOS/TTL compatible
7	VCC	Supply voltage
8	Output 2	Channel 2 power stage output, internally protected
9	Output 2	Channel 2 power stage output, internally protected
10	Output 1	Channel 1 power stage output, internally protected
11	Output 1	Channel 1 power stage output, internally protected
12	VCC	Supply voltage
TAB	TAB	Supply voltage

Table	3.	Pin	description
-------	----	-----	-------------

3 Maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Power supply voltage	45	V
-V _{CC}	Reverse supply voltage	-0.3	V
I _{GND}	DC ground reverse current	-250	mA
I _{OUT}	Output current (continuous)	Internally limited	A
I _R	Reverse output current (per channel)	-5	A
I _{IN}	Input current (per channel)	± 10	mA
V _{IN}	Input voltage	+V _{CC}	V
V _{DIAG}	Diag pin voltage	+V _{CC}	V
I _{DIAG}	Diag pin current	± 10	mA
V _{ESD}	Electrostatic discharge (R = $1.5 \text{ k}\Omega$; C = 100 pF)	2000	V
E _{AS}	Single pulse avalanche energy per channel, all channels driven simultaneously at T _{amb} = 125 °C, I _{OUT} = 1 A	300	mJ
P _{TOT}	Power dissipation at T _c = 25 °C	Internally limited	W
TJ	Junction operating temperature	Internally limited	°C
T _{STG}	Storage temperature	-55 to 150	°C

Table 4	Absolute	maximum	ratings
	Absolute	maximum	raungs

Thermal data

Table	5.	Thermal	data
-------	----	---------	------

Symbol	Parameter		Value	Unit
R _{th(JC)}	Thermal resistance junction to case ⁽¹⁾	Max.	1	°C/W
R _{th(JA)}	Thermal resistance junction to ambient ⁽²⁾	Max.	See Figure 11 on page 15	°C/W

1. Per channel.

2. When mounted using minimum recommended pad size on FR-4 board.

4 Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
V _{CC}	Supply voltage		9	-	45	V		
R _{DS(ON)}	On-state resistance	I _{OUT} = 0.5 A at T _J = 25 °C I _{OUT} = 0.5 A	-	0.080	0.150	Ω Ω		
V _{CLAMP}	Clamp voltage	Is = 20 mA	45	-	52	V		
I _S	Supply current	All channel in off-state On-state with V _{IN} =5 V (T _J = 125 °C)	-	300 1.9	4	μA mA		
I _{LGND}	Output current at turn-off	$V_{CC} = V_{DIAG} = V_{IN} =$ $V_{GND} = 24 V, V_{OUT} = 0 V$	-	-	1	mA		
V _{OUT(OFF)}	Off-state output voltage	$V_{IN} = 0 V$ and $I_{OUT} = 0 A$	-	-	3	V		
	OFF-state output current	V _{IN} = V _{OUT} = 0 V	0	-	5	μA		
I _{OUT(OFF1)}		V _{IN} = 0 V; V _{OUT} = 4 V	-35	-	0	μA		

Table 6. Power section

Table 7. Timing (V_{CC} = 24 V, R_{LOAD} = 48 Ω)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
t _{d(ON)}	Turn-on delay time of output current	l _{OUT} = 0.5 A, resistive load Input rise time < 0.1 μs, T _J = 25 °C	-	8	-	μs	
t _r	Rise time of output current	I _{OUT} = 0.5 A, resistive load Input rise time < 0.1 μs, T _J = 25 °C	-	15	-	μs	
$t_{d(ON)} + t_r$	Turn-on response	l _{OUT} = 0.5 A, resistive load Input rise time < 0.1 μs, T _J = 25 °C	-	-	35	μs	
t _{d(OFF)}	Turn-off delay time of output current	l _{OUT} = 0.5 A, resistive load Input rise time < 0.1 μs, T _J = 25 °C	-	10	-	μs	
t _f	Fall time of output current	I _{OUT} = 0.5 A, resistive load Input rise time < 0.1 μs, T _J = 25 °C	-	7	-	μs	
t _{d(OFF)} + t _f	Turn-off response	I _{OUT} = 0.5 A, resistive load Input rise time < 0.1 μs, T _J = 25 °C	-	-	40	μs	
t _{DOL}	Delay time for open-load detection	-	-	500	-	μs	
dV/dt _(ON)	Turn ON voltage slope	-	-	3	-	V/µS	
dV/dt(off)	Turn OFF voltage slope	-	-	4	-	V/µS	

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IL}	Input low level voltage	-	-	-	0.8	V
V _{IH}	Input high level voltage	-	2.20	-	-	V
V _{I(HYST)}	Input hysteresis voltage	-	-	0.15	-	V
I _{IN}	Input current	V _{IN} = 15 V	-	-	10	
		V _{IN} = 36 V	-	-	210	- μΑ

Table 8. Logical input

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{DIAG}^{(1)}$	Diag voltage output low	I _{DIAG} = 1.5 mA (fault condition)	-	-	0.6	V
V _{USD}	Undervoltage protection	-	7	-	9	V
V _{USDHYS}	Undervoltage hysteresis	-	0.4	0.5	-	V
I _{LIM}	DC short-circuit current	V_{CC} = 24 V; R_{LOAD} < 10 m Ω	1	-	2	А
I _{LDIAG}	Diag leakage current	V _{CC} = 32 V	-	30	-	μA
V _{OL}	Open-load off-state voltage detection threshold	V _{IN} = 0 V	2	3	4	V
T _{TSD}	Junction shutdown temperature	-	150	170	-	°C
Τ _R	Junction reset temperature	-	135	155	200	°C
T _{HIST}	Junction thermal hysteresis	-	7	15	-	°C
T _{CSD}	Case shutdown temperature	-	125	130	135	°C
T _{CR}	Case reset temperature	-	110	-	-	°C
T _{CHYST}	Case thermal hysteresis	-	7	15	-	°C
V _{demag}	Output voltage at turn-OFF	I _{OUT} = 0.5 A; L _{LOAD} >= 1 mH	V _{CC} - 45	V _{CC} - 50	V _{CC} - 52	V

1. Diag determination > 100 ms after the switching edge.

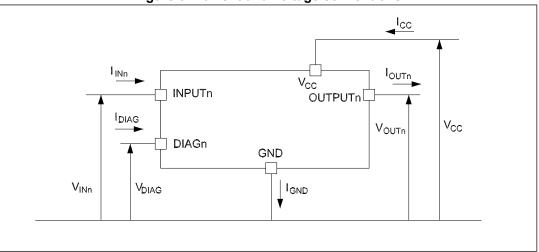


Figure 3. Current and voltage conventions

5 Truth table

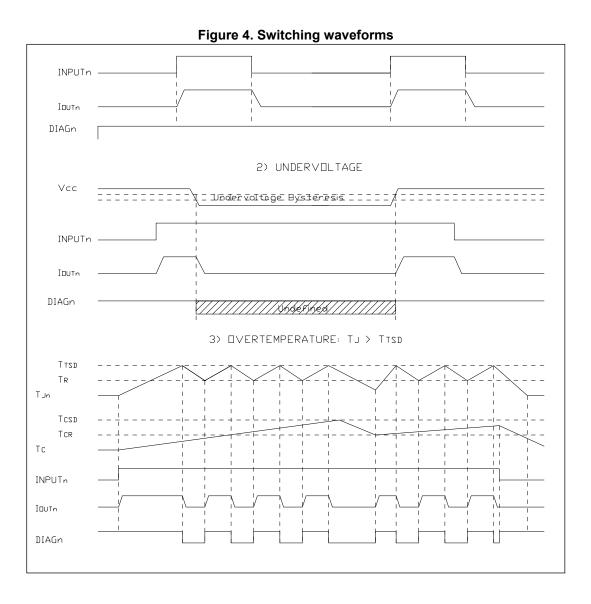

Table 10. Truth table				
IC condition	INPUTn	OUTPUTn	DIAGn	
Normal operation	L	L	Н	
Normal operation	Н	Н	Н	
Overtemperature	L	L	Н	
Overtemperature	Н	L	L	
Lindom coltage	L	L	Х	
Undervoltage	Н	L	Х	
Shorted-load	L	L	Н	
(current limitation)	Н	Х	Н	
	L	Z ⁽¹⁾	L	
Output voltage > V _{OL}	Н	Н	Н	
$O_{\rm b}$ and $t_{\rm c}$ λ	L	Н	L	
Short to V _{CC}	Н	Н	Н	

Table 10. Truth table

1. Z = depending on the external circuit.

6 Switching waveforms

10/23

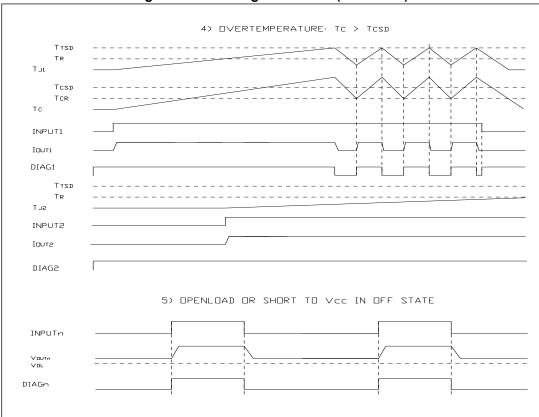
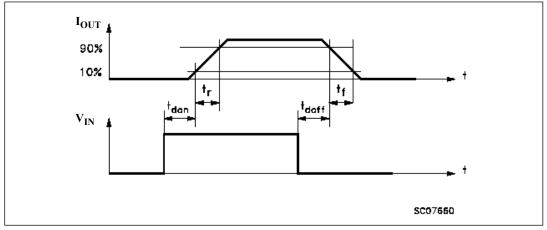



Figure 5. Switching waveforms (continued)

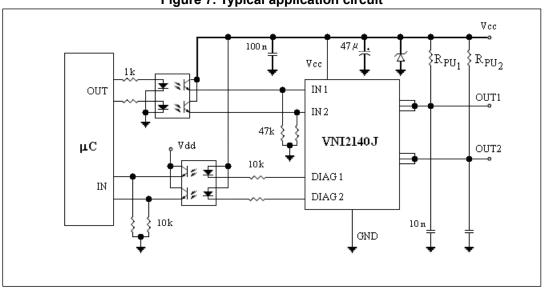


Figure 7. Typical application circuit

12/23

7 Open-load

In order to detect the open-load fault a pull-up resistor must be connected between the $V_{\rm CC}$ line and the output pin.

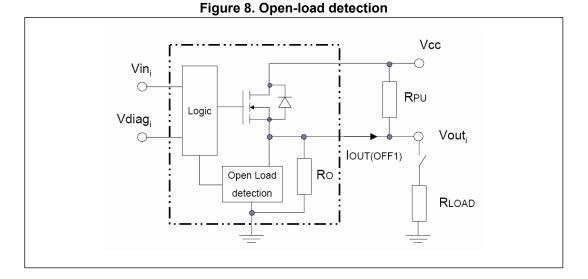
In a normal condition a current flows through the network made up of a pull-up resistor and a load. The voltage across the load is less than V_{OLMIN} ; so the diag pin is kept high.

This is the result in the condition:

Equation 1

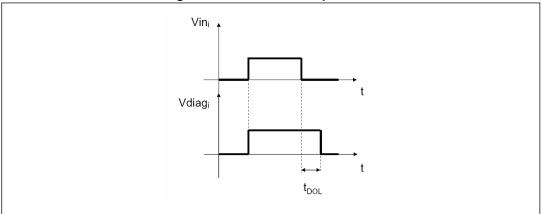
$$V_{CC} \frac{R_{LOAD}}{R_{LOAD} + R_{PU}} < V_{OLMIN}$$

or


Equation 2

$$\left(\frac{V_{CC}}{V_{OLMIN}} - 1\right) \cdot R_{LOAD} < R_{PU}$$

When a open-load event occurs the voltage on the output pin rises to a value higher than V_{OLMAX} (depending on the pull-up resistor). The diag pin will go down.


This result in the condition:

Equation 3

8 Package and PCB thermal data

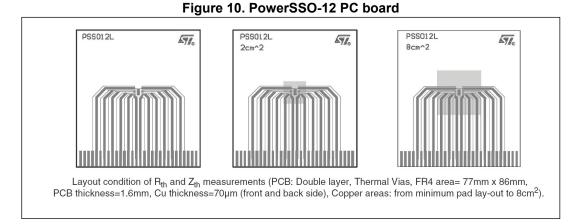


Figure 11. R_{thJA} vs PCB copper area in open box free air condition

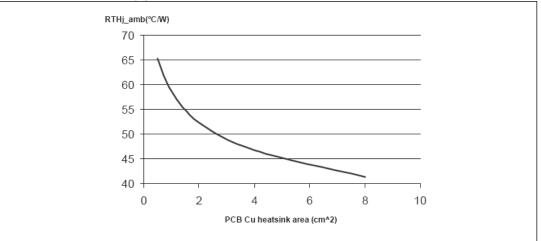
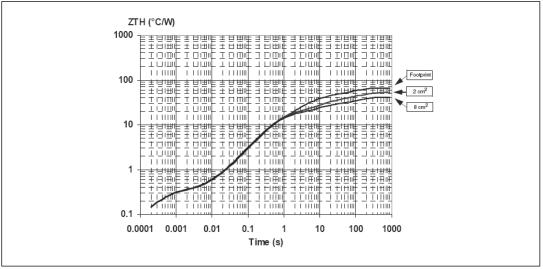
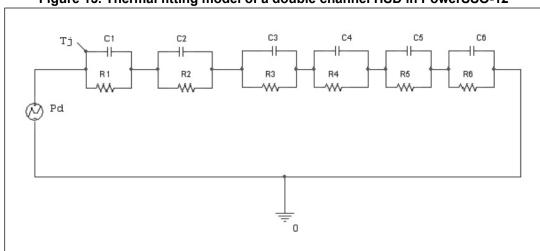



Figure 12. PowerSSO-12 thermal Impedance junction ambient single pulse



Pulse calculation formula

Equation 4

$$Z_{TH\delta} = R_{TH} \times \delta + Z_{THtp} (1 - \delta)$$

where $\delta = t_P/T$

Figure 13. Thermal fitting model of a double channel HSD in PowerSSO-12

Table	11.	Thermal	parameter
-------	-----	---------	-----------

Area/island (cm ²)	Footprint	2	8
R1 (°C/W)	0.1	-	-
R2 (°C/W)	0.2	-	-
R3 (°C/W)	7	-	-
R4 (°C/W)	10	10	9
R5 (°C/W)	22	15	10
R6 (°C/W)	26	20	15
C1 (W.s/°C)	0.0001	-	-
C2 (W.s/°C)	0.002	-	-
C3 (W.s/°C)	0.05	-	-
C4 (W.s/°C)	0.2	0.1	0.1
C5 (W.s/°C)	0.27	0.8	1
C6 (W.s/°C)	3	6	9

9 Reverse polarity protection

Reverse polarity protection can be implemented on board using two different solutions:

- 1. Placing a resistor (RGND) between IC GND pin and load GND.
- 2. Placing a diode between IC GND pin and load GND.

If option 1 is selected, the minimum resistance value has to be selected according to the following equation:

Equation 5

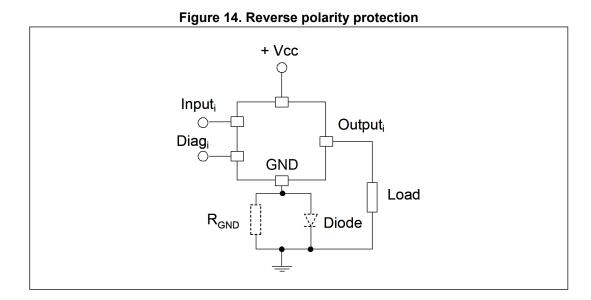
$$R_{GND} \ge V_{CC}/I_{GNDcc}$$

where IGNDcc is the DC reverse ground pin current and can be found in *Section 3: Maximum ratings* of this datasheet.

Power dissipated by R_{GND} during reverse polarity situations is:

Equation 6

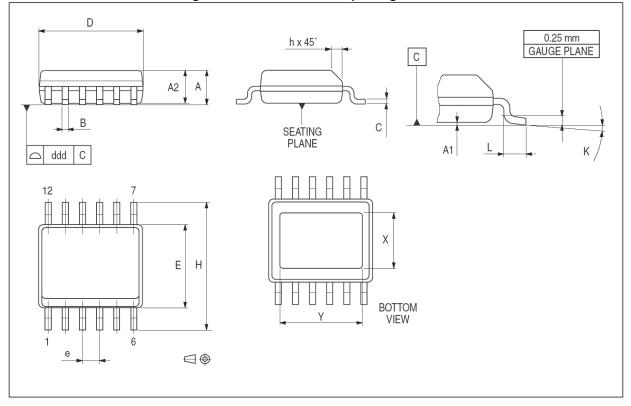
$$P_{D} = (V_{CC})^{2}/R_{GND}$$


If option 2 is selected, the diode has to be chosen by taking into account $V_{RRM} > |Vcc|$ and its power dissipation capability:

Equation 7

$$P_D \ge I_S * V_F$$

Note: In normal operation (no reverse polarity), there is a voltage drop (ΔV) between GND of the device and GND of the system. Using option 1, $\Delta V = Rgnd * Icc$. Using option 2, $\Delta V = VF@(IF)$.

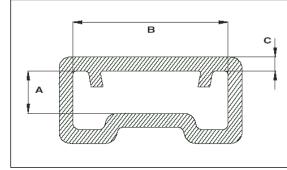


VNI2140

10 Package information

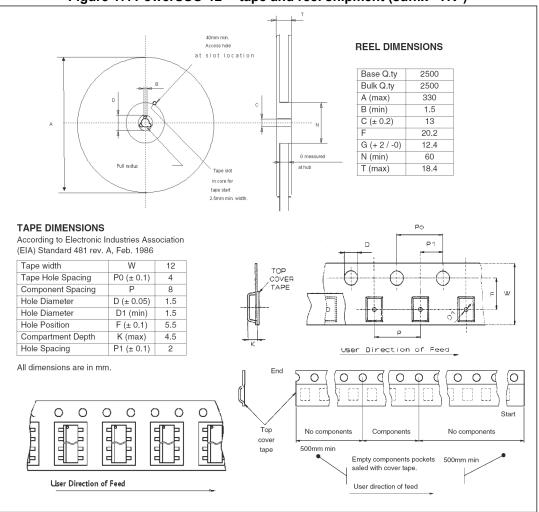
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

10.1 PowerSSO-12[™] package information


Figure 15. PowerSSO-12[™] package outline

Symbol	Dimensions (mm)			
Symbol	Min.	Тур.	Max.	
А	1.250	-	1.620	
A1	0.000	-	0.100	
A2	1.100	-	1.650	
В	0.230	-	0.410	
С	0.190	-	0.250	
D	4.800	-	5.000	
E	3.800	-	4.000	
е	-	0.800	-	
Н	5.800	-	6.200	
h	0.250	-	0.500	
L	0.400	-	1.270	
k	0°	-	8°	
Х	1.900	-	2.500	
Y	3.600	-	4.200	
ddd	-	-	0.100	

Table 12. PowerSSO-12™ mechanical data


Figure 16. PowerSSO-12™ tube shipment (no suffix)

Base Q.ty	100
Bulk Q.ty	2000
Tube length (± 0.5)	532
A	1.85
В	6.75
C (± 0.1)	0.6

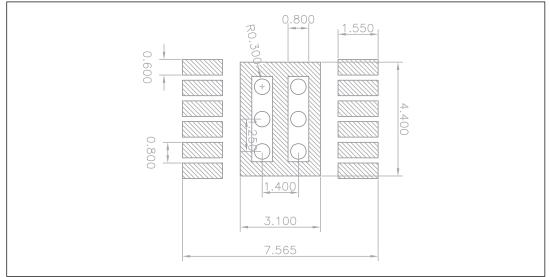

All dimensions are in mm.

Figure 17. PowerSSO-12[™] tape and reel shipment (suffix "TR")

Figure 18. Suggested footprint

11 Revision history

Table 15. Document revision history		
Date	Revision	Changes
16-Dec-2008	1	Initial release
29-Apr-2009	2	Updated Table 5 on page 6
03-Jul-2009	3	Updated features in coverpage and Table 5 on page 6
27-Aug-2009	4	Updated Section 9: Reverse polarity protection
25-Mar-2010	5	Updated Coverpage and Table 4 on page 5
26-Apr-2010	6	Updated Table 5 on page 6
21-Jul-2010	7	Updated Table 8 on page 7
15-Nov-2011	8	Updated Figure 18 on page 21
09-Nov-2017	9	Updated <i>Table 4 on page 5</i> and <i>Table 7 on page 6</i> . Minor modifications throughout document.
10-Dec-2019	10	Updated Section 9: Reverse polarity protection

Table 13. Document revision history

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved

