8-STAGE PRESETTABLE SYNCHRONOUS 8 BIT BINARY DOWN COUNTERS

- SYNCHRONOUS OR ASYNCHRONOUS PRESET
- MEDIUM -SPEED OPERATION : $\mathrm{f}_{\mathrm{CL}}=3.6 \mathrm{MHz}$ (Typ.) at $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$
- CASCADABLE
- QUIESCENT CURRENT SPECIF. UP TO 20V
- 5V, 10V AND 15V PARAMETRIC RATINGS
- INPUT LEAKAGE CURRENT
$I_{I}=100 \mathrm{nA}(M A X) A T V_{D D}=18 \mathrm{~V}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC JESD13B "STANDARD SPECIFICATIONS FOR DESCRIPTION OF B SERIES CMOS DEVICES"

DESCRIPTION

HCF40103B is a monolithic integrated circuit fabricated in Metal Oxide Semiconductor technology available in DIP and SOP packages.
HCF40103B consists of an 8-stage synchronous down counter with a single output that is active when the internal count is zero. This device contains a single 8 -bit binary counter. It has control inputs for enabling or disabling the clock, for clearing the counter to its maximum count, and for presetting the counter either synchronously or asynchronously. All control inputs and the CARRY-OUT/ZERO DETECT output are active-low logics. In normal operation, the counter is decremented by one count on each positive transition of the CLOCK. Counting is inhibited when the $\overline{\text { CARRY-IN/COUNTER ENABLE }}(\overline{\mathrm{Cl}})$

ORDER CODES

PACKAGE	TUBE	T \& R
DIP	HCF40103BEY	
SOP	HCF40103BM1	HCF40103M013TR

$\overline{\mathrm{CE}})$ input is high. The $\overline{\text { CARRY-OUT/ZERO }}$ DETECT ($\overline{C O / Z D}$) output goes low when the count reaches zero if the CI/CE input is low, and remains low for one full clock period. When the SYNCHRONOUS PRESET ENABLE ($\overline{\text { SPE }}$) input is low, data at the JAM input is clocked into the counter on the next positive clock transition regardless of the state of the $\overline{\mathrm{Cl}} / \overline{\mathrm{CE}}$ input. When the ASYNCHRONOUS PRESET ENABLE ($\overline{\mathrm{APE}}$) input is low, data at the JAM inputs is asynchronously forced into the counter regardless of the state of the $\overline{\mathrm{SPE}}, \overline{\mathrm{CI} / \mathrm{CE}}$, or CLOCK inputs. JAM inputs J0-J7 represent a single 8 bit binary word. When the CLEAR ($\overline{\mathrm{CLR} \text {) input is low, the }}$ counter is asynchronously cleared to its maximum count $\left(255_{10}\right)$ regardless of the state of any other input. The precedent relationship between control input is indicated in the truth table. If all control

PIN CONNECTION

inputs are high at the time of zero count, the counters will jump to the maximum count, giving a counting sequence of 256 clock pulses long.
IINPUT EQUIVALENT CIRCUIT

HCF40103B may be cascaded using the $\overline{\mathrm{CI} / \mathrm{CE}}$ input and the $\overline{C O / Z D}$ output, in either a synchronous or ripple mode.
PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	CLOCK	Clock Input (LOW to HIGH edge triggered)
2	$\overline{\text { CLEAR }}$	Asynchronous Master Reset Input (Active Low)
3	$\overline{\mathrm{CI} / \mathrm{CE}}$	Terminal Enable Input
$4,5,6,7,10$, $11,12,13$	J0 to J7	Jam Inputs
9	$\overline{\mathrm{APE}}$	Asynchronous Preset Enable Inputs(Active Low)
14	$\overline{\mathrm{CO} / \mathrm{ZD}}$	Terminal Count Output (Active Low)
15	$\overline{\mathrm{SPE}}$	Synchronous Preset Enable Input (Active Low)
8	$\overline{\mathrm{~V}_{\mathrm{SS}}}$	Negative Supply Voltage
16	$\mathrm{~V}_{\mathrm{DD}}$	Positive Supply Voltage

FUNCTIONAL DIAGRAM

TRUTH TABLES

CONTROL INPUTS				PRESET MODE	ACTION
$\overline{\text { CLR }}$	$\overline{\text { APE }}$	$\overline{\text { SPE }}$	$\overline{C I / C E}$		
H	H	H	H	Synchronous	Inhibit Counter
H	H	H	L		Count Down
H	H	L	X		Preset on Next Positive Clock Transition
H	L	X	X	Asynchronous	Preset Asynchronously
L	X	X	X		Clear to Maximum Count

X : Don't Care
Synchronous Operation : changes occur on negative to positive clock transitions.

LOGIC DIAGRAM

LOGIC DIAGRAM FOR FLIP-FLOPS, FFO-FF7

TIMING CHART

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	-0.5 to +22	V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
I_{I}	DC Input Current	± 10	mA
P_{D}	Power Dissipation per Package	200	mW
	Power Dissipation per Output Transistor	100	mW
$\mathrm{~T}_{\mathrm{op}}$	Operating Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{stg}}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.
All voltage values are referred to V_{SS} pin voltage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	3 to 20	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0 to V_{DD}	V
T_{op}	Operating Temperature	-55 to 125	${ }^{\circ} \mathrm{C}$

DC SPECIFICATIONS

Symbol	Parameter	Test Condition				Value							Unit
		$\begin{gathered} V_{1} \\ \text { (V) } \end{gathered}$	v_{0}(V)	$\begin{gathered} \left\lvert\, \begin{array}{c} \mathrm{IO} \\ (\mu \mathrm{~A}) \end{array}\right. \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & (\mathrm{~V}) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
						Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
I_{L}	Quiescent Current	0/5			5		0.04	5		150		150	$\mu \mathrm{A}$
		0/10			10		0.04	10		300		300	
		0/15			15		0.04	20		600		600	
		0/20			20		0.08	100		3000		3000	
V_{OH}	High Level Output Voltage	0/5		<1	5	4.95			4.95		4.95		V
		0/10		<1	10	9.95			9.95		9.95	,	
		0/15		<1	15	14.95			14.95		14.95	C	
V_{OL}	Low Level Output Voltage	5/0		<1	5		0.05			0.05		0.05	V
		10/0		<1	10		0.05			0.05	I	0.05	
		15/0		<1	15		0.05			0.05	,	0.05	
V_{IH}	High Level Input Voltage		0.5/4.5	<1	5	3.5			3.5	,	3.5		V
			1/9	<1	10	7			7		7		
			1.5/13.5	<1	15	11		ค	11		11		
V_{IL}	Low Level Input Voltage		4.5/0.5	<1	5			1.5		1.5		1.5	V
			9/1	<1	10			3		3		3	
			13.5/1.5	<1	15	-		4		4		4	
$\mathrm{IOH}^{\text {a }}$	Output Drive Current	0/5	2.5	<1	5	-1.36	-3.2		-1.1		-1.1		mA
		0/5	4.6	<1	5	-0.44	-1		-0.36		-0.36		
		0/10	9.5	<1	10	-1.1	-2.6		-0.9		-0.9		
		0/15	13.5	<1	15	-3.0	-6.8		-2.4		-2.4		
${ }_{\text {IOL }}$	Output Sink Current	0/5	0.4	<1	5	0.44	1		0.36		0.36		mA
		0/10	0.5	<1	10	1.1	2.6		0.9		0.9		
		0/15	1.5	<1	15	3.0	6.8		2.4		2.4		
1	Input Leakage Current	0/18	Any Input		18		$\pm 10^{-5}$	± 0.1		± 1		± 1	$\mu \mathrm{A}$
C_{1}	Input Capacitance		Any Input				5	7.5					pF

The Noise Margin for both "1" and " 0 " level is: 1 V min. with $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, 2 \mathrm{~V}$ min. with $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, 2.5 \mathrm{~V}$ min. with $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$

HCF40103B

DYNAMIC ELECTRICAL CHARACTERISTICS $\left(T_{\text {amb }}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{~K} \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}\right.$)

Symbol	Parameter	Test Condition		Value (*)			Unit
		V_{DD} (V)		Min.	Typ.	Max.	
$\mathrm{t}_{\text {PHL }} \mathrm{t}_{\text {PLH }}$	Propagation Delay Time Clock To Out	5			300	600	ns
		10			130	260	
		15			95	190	
$\mathrm{t}_{\text {PHL }} \mathrm{t}_{\text {PLH }}$	Propagation Delay Time Carry In/counter Enable To Output	5			200	400	ns
		10			90	180	
		15			65	130	
$\mathrm{t}_{\text {PHL }} \mathrm{t}_{\text {PLH }}$	Propagation Delay Time Asynchronous Preset Enable To Output	5			650	1300	ns
		10			300	600	
		15			200	400	
$\mathrm{t}_{\text {PHL }} \mathrm{t}_{\text {PLH }}$	Propagation Delay Time Clear To Output	5			375	750	ns
		10		λ	180	360	
		15		-	100	200	
${ }_{\text {tehL }} \mathrm{t}_{\text {TLH }}$	Transition Time	5			100	200	ns
		10			50	100	
		15	$\times 1$		40	80	
t_{w}	Clock Pulse Width	5	\square	300	150		ns
		10	T	180	90		
		15	\bigcirc	80	40		
t_{w}	$\overline{\text { Clear Pulse Width }}$	5	-	320	160		ns
		10	\bigcirc	160	80		
		15		100	50		
${ }^{\text {tw }}$	$\overline{\text { APE Pulse Width }}$	5		360	180		ns
		$\begin{array}{r}5 \\ \times \quad 10 \\ \hline 15\end{array}$		160	80		
) 15		120	60		
$\mathrm{t}_{\text {setup }}$	$\overline{\text { SPE Setup Time }}$	5		280	140		ns
		10		140	70		
		15		100	50		
$\mathrm{t}_{\text {setup }}$	JAM Setup Time	5		200	100		ns
		10		80	40		
		15		60	30		
	Maximum Clock Input Frequency	5		0.7	1.4		MHz
		10		1.8	3.6		
		15		2.4	4.8		

(*) Typical temperature coefficient for all V_{DD} value is $0.3 \% /{ }^{\circ} \mathrm{C}$.

TYPICAL APPLICATIONS

DIVIDE BY "N" COUNTER

MICROPROCESSOR INTERRUPT TIMER

MICROPROCESSOR INTERRUPT TIMER

SYNCHRONOUS CASCADING

SYNCHRONOUS CASCADING

* An Output spike (160 ns at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$) occurs whenever two or more devices are cascaded in the parallel clocked mode because the clock-to-carry out delay is greater than the carry-in-to-carry-out delay. This spike is eliminated by gating the output of the last device with the clock as shown.

TEST CIRCUIT

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (includes jig and probe capacitance)
$R_{L}=200 \mathrm{~K} \Omega$
$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\mathrm{OUT}}$ of pulse generator (typically 50Ω)
WAVEFORM 1 : PROPAGATION DELAY TIME ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

WAVEFORM 2 : PROPAGATION DELAY, MINIMUM PULSE WIDTH AND REMOVAL TIME (f=1MHz; 50% duty cycle)

WAVEFORM 3 : PROPAGATION DELAY, MINIMUM PULSE WIDTH AND REMOVAL TIME (f=1MHz; 50% duty cycle)

WAVEFORM 4 : PROPAGATION DELAY TIME ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

WAVEFORM 5 : MINIMUM SETUP TIME ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

WAVEFORM 6 : MINIMUM SETUP TIME ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

Plastic DIP-16 (0.25) MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
B	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	C
D			20		0.335	
E		2.54			0.100	
e		17.78				0.787
e3			7.1			
F			5.1		0.130	
I		3.3				
L			1.27			0.280
Z						

SO-16 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			1.75			0.068
a1	0.1		0.2	0.003		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
C		0.5			0.019	$)$
c1	45° (typ.)					
D	9.8		10	0.385		0.393
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		8.89		K	0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
M			0.62			0.024
S	8° (max.)					

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
© http://www.st.com

