

4-Pin µP Voltage Supervisor with Manual Reset

General Description

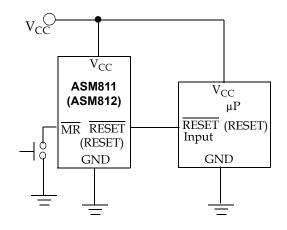
The ASM811/ASM812 are cost effective low power supervisors designed to monitor voltage levels of 3.0V, 3.3V and 5.0V power supplies in low-power microprocessor (μ P), microcontroller (μ C) and digital systems. They provide excellent reliability by eliminating external components and adjustments.

A reset signal is issued if the power supply voltage drops below a preset reset threshold and is asserted for at least 140ms after the supply has risen above the reset threshold. The ASM811 has an active-low output \overline{RESET} that is guaranteed to be in the correct state for V_{CC} down to 1.1V. The ASM812 has an active-high RESET output. The reset comparator is designed to ignore fast transients on $V_{CC}.$ A debounced manual reset input allows the user to manually reset the systems to bring them out of locked state.

Low power consumption makes the ASM811/ASM812 ideal for use in portable and battery operated equipment. The ASM811/ ASM812 are available in a compact 4-pin SOT-143 package and thus use minimal board space.

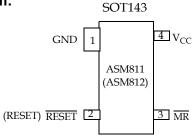
Applications

- · Computers and Controllers
- Embedded controllers
- Portable/Battery operated systems
- Intelligent instruments
- Wireless communication systems
- PDAs and handheld equipments
- · Automotive systems
- Safety Systems

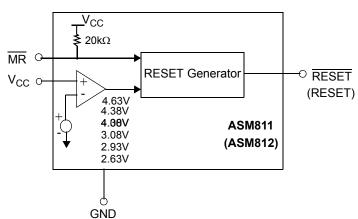

Six voltage thresholds are available to support 3V to 5V systems:

RESET THRESHOLD					
Suffix	Voltage (V)				
L	4.63				
M	4.38				
J	4.00				
Т	3.08				
S	2.93				
R	2.63				

Features


- · New 4.0V threshold option
- 6µA supply current
- Monitor 5V, 3.3V and 3V supplies
- Manual reset input
- 140ms min. reset pulse width
- Guaranteed over temperature
- Active-low reset valid with 1.1V supply (ASM811)
- Small 4-pin SOT-143 package
- · No external components
- Power-supply transient-immune design

Typical Operating Circuit



Block Diagram

Pin Description

Pi	n #	Pin	Function
ASM811	ASM812	Name	T unction
1	1	GND	Ground.
2	-	RESET	
-	2	RESET	RESET is asserted HIGH if V_{CC} falls below V_{TH} . RESET remains HIGH for atleast 140ms (T_{RST}) once V_{CC} exceeds the threshold. In addition, RESET is active HIGH as long as the manual reset (\overline{MR}) is low.
3	3	MR	Manual Reset Input. A logic LOW on $\overline{\text{MR}}$ asserts reset. Reset remains active as long as $\overline{\text{MR}}$ is LOW and for atleast 180ms (T _{MRST}) once $\overline{\text{MR}}$ returns HIGH. The active low input has an internal 20k Ω pull-up resistor. The input should be left open if not used. It can be driven by TTL or CMOS logic or shorted to ground by a switch.
4	4	V _{CC}	Power supply input voltage (3.0V, 3.3V, 5.0V)

Detailed Description

A proper reset input enables a microprocessor / microcontroller to start in a known state. ASM811/812 assert reset to prevent code execution errors during power-up, power-down and brown-out conditions.

Reset Timing

The reset signal is asserted- LOW for the ASM811 and HIGH for the ASM812- when the V_{CC} supply voltage falls below the threshold trip voltage and remains asserted for 140ms minimum after the V_{CC} has risen above the threshold.

Manual Reset (MR) Input

A logic low on \overline{MR} assserts \overline{RESET} LOW on the ASM811 and RESET HIGH on the ASM812. \overline{MR} is internally pulled high through a $20k\Omega$ resistor and can be driven by TTL/CMOS gates or with open collector/drain outputs. \overline{MR} can be left open if not used. \overline{MR} may be connected to ground through a normally-open momentary switch without an external debounce circuit.

A $0.1\mu F$ capacitor from \overline{MR} to ground can be added for additional noise immunity.

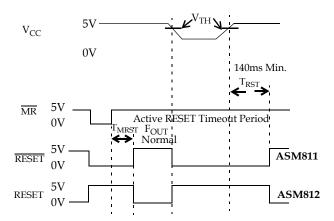
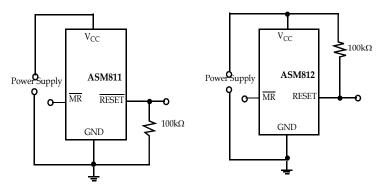


Figure 1: Reset Timing and Manual Reset (MR)


Reset Output Operation

In μP / μC systems it is important to have the processor and the system begin operation from a known state. A reset output to a processor is provided to prevent improper operation during power supply sequencing or low voltage brown-out conditions.

The ASM811/812 are designed to monitor the system power supply voltages and issue a reset signal when the levels are out of range. RESET outputs are guaranteed to be active for V_{CC} above 1.1V. When V_{CC} exceeds the reset threshold, an internal timer keeps RESET active for the reset timeout period, after which RESET becomes inactive (HIGH for the ASM811 and LOW for the ASM812). If V_{CC} drops below the reset threshold, RESET automatically becomes active. Alternatively, external circuitry or an operator can initiate this condition using the Manual Reset $(\overline{\rm MR})$ pin. $\overline{\rm MR}$ can be left open if it is not used. $\overline{\rm MR}$ can be driven by TTL/CMOS logic or even an external switch.

Valid Reset with V_{CC} under 1.1V

To ensure logic inputs connected to the ASM811 \overline{RESET} pin are in a known state when V_{CC} is under 1.1V, a $100k\Omega$ pull-down resistor at \overline{RESET} is needed. The value is not critical. A $100k\Omega$ pull-up resistor to V_{CC} at RESET is needed with the ASM812.

Figures 2 & 3: RESET valid with V_{CC} under 1.1V

Application Information

Negative VCC Transients

Typically short duration transients of 100mV amplitude and 60 μ s duration do not cause a false RESET. A 0.1 μ F capacitor at V_{CC} increases transient immunity.

Bidirectional Reset Pin Interfacing

The ASM811/812 can interface with μP / μC bi-directional reset pins by connecting a 4.7k Ω resistor in series with the ASM811/812 reset output and the $\mu P/\mu C$ bi-directional reset input pin.

Figure 4: Bi-directional Reset Pin Interface

rev 1.5
Absolute Maximum Ratings, Table 1:

Parameter	Min	Max	Units			
Pin Terminal Voltage With Respect To Ground						
V _{CC}	-0.3	6.0	V			
RESET, RESET and MR	-0.3	V _{CC} + 0.3	V			
Input current at V _{CC} and MR		20	mA			
Output current: RESET, RESET		20	mA			
Rate of Rise at V _{CC}		100	V/µs			
ESD rating HBM MM		2 200	KV V			

Note: These are stress ratings only and the functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability.

Absolute Maximum Ratings, Table 2:

Parameter	Min	Max	Units
Power Dissipation (T _A = 70°C) Derate SOT-143 4mW/°C above 70°C		320	mW
Operating temperature range	-40	105	°C
Storage temperature range	-65	160	°C
Lead temperature (Soldering, 10 sec)		300	°C

Note: These are stress ratings only and the functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability.

rev 1.5

Electrical Characteristics:

Unless otherwise noted, V_{CC} is over the full voltage range, T_A = -40°C to 105°C. Typical values at T_A = 25°C, V_{CC} = 5V for L/M/J devices, V_{CC} = 3.3V for T/S devices and V_{CC} = 3V for R devices.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{CC}	Input Voltage Range	$T_A = 0^{\circ}\text{C to } 70^{\circ}\text{C}$ $T_A = -40^{\circ}\text{C to } 105^{\circ}\text{C}$		1.1 1.2		5.5 5.5	V V
I _{CC}	Supply Current (Unloaded)	T_A = -40°C to 85°C T_A = -40°C to 85°C T_A = 85°C to 105°C T_A = 85°C to 105°C	V_{CC} < 5.5V, L/M/J V_{CC} < 3.6V, R/S/T V_{CC} < 5.5V, L/M/J V_{CC} < 3.6V, R/S/T		6 5	15 10 25 20	μА
		L devices	$T_A = 25^{\circ}\text{C}$ $T_A = -40^{\circ}\text{C to }85^{\circ}\text{C}$ $T_A = 85^{\circ}\text{C to }105^{\circ}\text{C}$	4.56 4.50 4.40	4.63	4.70 4.75 4.86	
		M devices	$T_A = 25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } 85^{\circ}C$ $T_A = 85^{\circ}C \text{ to } 105^{\circ}C$	4.31 4.25 4.16	4.38	4.45 4.50 4.56	
V _{TH}	Book Thombald	J devices	$T_A = 25^{\circ}\text{C}$ $T_A = -40^{\circ}\text{C to }85^{\circ}\text{C}$ $T_A = 85^{\circ}\text{C to }105^{\circ}\text{C}$	3.93 3.89 3.80	4.00	4.06 4.10 4.20	.,
	Reset Threshold	T devices	$T_A = 25^{\circ}\text{C}$ $T_A = -40^{\circ}\text{C to }85^{\circ}\text{C}$ $T_A = 85^{\circ}\text{C to }105^{\circ}\text{C}$	3.04 3.00 2.92	3.08	3.11 3.15 3.23	V
		S devices	$T_A = 25^{\circ}\text{C}$ $T_A = -40^{\circ}\text{C to }85^{\circ}\text{C}$ $T_A = 85^{\circ}\text{C to }105^{\circ}\text{C}$	2.89 2.85 2.78	2.93	2.96 3.00 3.08	
		R devices	$T_A = 25^{\circ}\text{C}$ $T_A = -40^{\circ}\text{C to }85^{\circ}\text{C}$ $T_A = 85^{\circ}\text{C to }105^{\circ}\text{C}$	2.59 2.55 2.50	2.63	2.66 2.70 2.76	
TC _{VTH}	Reset Threshold Temp. Coefficient				30		ppm/°C
	V _{CC} to Reset Delay	$V_{CC} = V_{TH} \text{ to } (V_{TH} - 125 \text{mV}),$			60		μs
		T _A = 0°C to 70°C		140		560	
T _{RST}	Reset Active Timeout Period	T _A = -40°0	C to 105°C	100	240	840	ms
t _{MR}	MR Minimum Pulse Width			10			μs
	MR Glitch Immunity	Note 3			100		ns

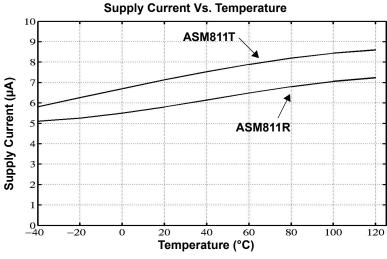
- 1. Production testing done at TA = 25°C. Over-temperature specifications guaranteed by design only using six sigma design limits.
- 2. RESET output is active LOW for the ASM811 and RESET output is active HIGH for the ASM812.
- 3. Glitches of 100ns or less typically will not generate a reset pulse.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{MD}	MR to RESET Propagation Delay	Note 2		0.5		μs
V _{IH}	MR Input Threshold	V _{CC} > V _{TH} (MAX),	2.3			V
V _{IL}	WK Input Threshold	ASM811/812L/M/J			0.8	V
V _{IH}	MR Input Threshold	V _{CC} > V _{TH} (MAX),	0.7V _{CC}			.,
V _{IL}	MR Input Threshold	ASM811/812R/S/T			0.25V _{CC}	V
	MR Pullup Resistance		10	20	30	kΩ
		V_{CC} = V_{TH} min., I_{SINK} = 1.2mA, ASM811R/S/T			0.3	
V _{OL}	V _{OL} Low RESET Output Voltage (ASM811)	V _{CC} = V _{TH} min., I _{SINK} = 3.2mA, ASM811L/M/J			0.4	V
		V _{CC} > 1.1V, I _{SINK} = 50μA			0.3	
V	High RESET Output Voltage	V _{CC} > V _{TH} max., I _{SOURCE} = 500μA, ASM811R/S/T	0.8V _{CC}			٧
V _{OH}	(ASM811)	V _{CC} > V _{TH} max., I _{SOURCE} = 800μA, ASM811L/M/J	V _{CC} - 1.5			V
V	Low RESET Output Voltage	V _{CC} = V _{TH} max., I _{SINK} = 1.2mA, ASM812R/S/T			0.3	V
V _{OL}	(ASM812)	V _{CC} = V _{TH} max., I _{SINK} = 3.2mA, ASM812L/M/J			0.4	
V _{OH}	High RESET Output Voltage (ASM812)	1.8V < V _{CC} < V _{TH} min., I _{SOURCE} = 150μA	0.8V _{CC}			V

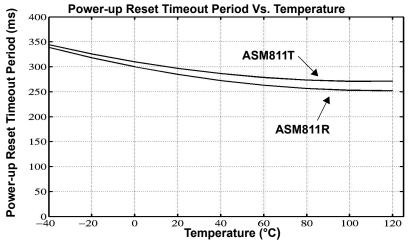
Notes:

^{1. &}lt;u>Production</u> testing done at TA = 25°C. Over-temperature specifications guaranteed by design only using six sigma design limits.

^{2.} RESET output is active LOW for the ASM811 and RESET output is active HIGH for the ASM812.

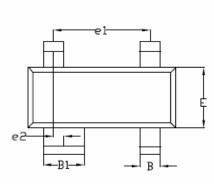

^{3.} Glitches of 100ns or less typically will not generate a reset pulse.

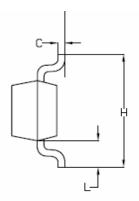


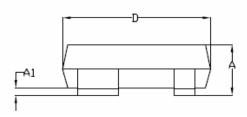

Typical Operating Characteristics

Unless otherwise noted, V_{CC} is over the full voltage range, T_A = -40°C to 105°C. Typical values at T_A = 25°C,

 $\rm V_{CC}$ = 5V for L/M/J devices, $\rm V_{CC}$ = 3.3V for T/S devices and $\rm V_{CC}$ = 3V for R devices.







rev 1.5 Package Dimensions:

Plastic SOT-143 (4-Pin)

Symbol		Dimensions			
Cymbol	Inc	hes	Millim	neters	
	Min	Max	Min	Max	
А	0.031	0.048	0.80	1.22	
A1	0.002	0.006	0.05	0.15	
В	0.012	0.020	0.30	0.50	
B1	0.030	0.035	0.76	0.89	
С	0.003	0.008	0.08	0.20	
D	0.110	0.120	2.80	3.04	
Е	0.047	0.055	1.20	1.40	
e1	0.075	BSC	1.92 BSC		
e2	0.181 BSC		4.60	BSC	
Н	0.083	0.104	2.10	2.64	
L	0.016	0.024	0.400 0.600		

rev 1.5

Ordering Information

Part Number	Reset Threshold (V)	Temperature Range	Pin-Package	Package Marking (LL Lot Code)		
ASM811 ACTIVE LOW RESET, TIN-LEAD PLATED DEVICES						
ASM811LEUS	4.63	-40°C to +105°C	4-SOT143	SMLL		
ASM811MEUS	4.38	-40°C to +105°C	4-SOT143	SNLL		
ASM811JEUS	4.00	-40°C to +105°C	4-SOT143	SOLL		
ASM811TEUS	3.08	-40°C to +105°C	4-SOT143	SPLL		
ASM811SEUS	2.93	-40°C to +105°C	4-SOT143	SQLL		
ASM811REUS	2.63	-40°C to +105°C	4-SOT143	SRLL		
	ASM812 ACTIVE HIGH	RESET, TIN-LEAD PLATE	D DEVICES			
ASM812LEUS	4.63	-40°C to +105°C	4-SOT143	SSLL		
ASM812MEUS	4.38	-40°C to +105°C	4-SOT143	STLL		
ASM812JEUS	4.00	-40°C to +105°C	4-SOT143	SULL		
ASM812TEUS	3.08	-40°C to +105°C	4-SOT143	SVLL		
ASM812SEUS	2.93	-40°C to +105°C	4-SOT143	SWLL		
ASM812REUS	2.63	-40°C to +105°C	4-SOT143	SXLL		
	ASM811 ACTIVE L	OW RESET, LEAD FREE D	EVICES			
ASM811LEUSF	4.63	-40°C to +105°C	4-SOT143	NMLL		
ASM811MEUSF	4.38	-40°C to +105°C	4-SOT143	NNLL		
ASM811JEUSF	4.00	-40°C to +105°C	4-SOT143	NOLL		
ASM811TEUSF	3.08	-40°C to +105°C	4-SOT143	NPLL		
ASM811SEUSF	2.93	-40°C to +105°C	4-SOT143	NQLL		
ASM811REUSF	2.63	-40°C to +105°C	4-SOT143	NRLL		
	ASM812 ACTIVE H	IIGH RESET, LEAD FREE [DEVICES			
ASM812LEUSF	4.63	-40°C to +105°C	4-SOT143	NSLL		
ASM812MEUSF	4.38	-40°C to +105°C	4-SOT143	NTLL		
ASM812JEUSF	4.00	-40°C to +105°C	4-SOT143	NULL		
ASM812TEUSF	3.08	-40°C to +105°C	4-SOT143	NVLL		
ASM812SEUSF	2.93	-40°C to +105°C	4-SOT143	NWLL		
ASM812REUS	2.63	-40°C to +105°C	4-SOT143	NXLL		

Notes:

- For parts to be packed in Tape and Reel, add "-T" at the end of the part number.
- Alliance Semiconductor's lead free parts are RoHS compliant. All parts are Lead Free by default. Contact factory for Non Lead Free devices

rev 1.5

Related Products:

	ASM809	ASM810	ASM811	ASM812
Max Supply Current	15μΑ	15μΑ	15μΑ	15μΑ
Package Pins	3	3	4	4
Manual RESET input				
Package Type	SOT - 23	SOT - 23	SOT - 143	SOT - 143
Active-HIGH RESET Output				
Active-LOW RESET Output				

Alliance Semiconductor Corporation 2575, Augustine Drive, Santa Clara, CA 95054 Tel: 408 - 855 - 4900

Fax: 408 - 855 - 4999 www.alsc.com

Copyright © Alliance Semiconductor All Rights Reserved Part Number: ASM811, ASM812 Document Version: v 1.5

© Copyright 2003 Alliance Semiconductor Corporation. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems