
Vishay Semiconductors

COMPLIANT

HALOGEN

FREE

High Voltage, Input Rectifier Diode, 20 A

PRIMARY CHARACTERISTICS									
I _{F(AV)}	20 A								
V_{R}	800 V, 1200 V								
V _F at I _F	1.1 V								
I _{FSM}	300 A								
T _J max.	150 °C								
Package	TO-220AC 2L, TO-220AB 3L								
Circuit configuration	Single, common anode								

FEATURES

- Very low forward voltage drop
- 150 °C max. operating junction temperature
- Glass passivated pellet chip junction
- Designed and qualified according to JEDEC®-JESD 47
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Input rectification
- Vishay Semiconductors switches and output rectifiers which are available in identical package outlines

DESCRIPTION

High voltage rectifiers optimized for very low forward voltage drop with moderate leakage.

These devices are intended for use in main rectification (single or three phase bridge).

OUTPUT CURRENT IN TYPICAL APPLICATIONS									
APPLICATIONS	SINGLE-PHASE BRIDGE	THREE-PHASE BRIDGE	UNITS						
Capacitive input filter T _A = 55 °C, T _J = 125 °C common heatsink of 1 °C/W	16.3	21	А						

MAJOR RATINGS AND CHARACTERISTICS										
SYMBOL	CHARACTERISTICS	VALUES	UNITS							
I _{F(AV)}	Sinusoidal waveform	20	A							
V _{RRM}		800, 1200	V							
I _{FSM}		300	A							
V _F	10 A, T _J = 25 °C	1.0	V							
TJ		-40 to +150	°C							

VOLTAGE RATINGS										
PART NUMBER	V _{RRM} , MAXIMUM PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} AT 150 °C mA							
VS-20ETS08-M3, VS-20ATS08-M3	800	900	1							
VS-20ETS12-M3, VS-20ATS12-M3	1200	1300	1							

Revision: 29-Nov-2021 1 Document Number: 96244

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS									
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS					
Maximum average forward current	I _{F(AV)}	T _C = 105 °C, 180° conduction half sine wave	20						
Maximum peak one cycle		10 ms sine pulse, rated V _{RRM} applied	250	Α					
non-repetitive surge current	I _{FSM}	10 ms sine pulse, no voltage reapplied	300						
Maximum 12t for fusion	I ² t	10 ms sine pulse, rated V _{RRM} applied	316	A ² s					
Maximum I ² t for fusing	1-1	10 ms sine pulse, no voltage reapplied	442	A-S					
Maximum I ² √t for fusing	I²√t	t = 0.1 ms to 10 ms, no voltage reapplied	4420	A²√s					

ELECTRICAL SPECIFICATIONS										
PARAMETER	SYMBOL	TEST CO	TEST CONDITIONS							
Maximum forward voltage drop	V _{FM}	20 A, T _J = 25 °C	1.1	V						
Forward slope resistance	r _t	T 150 °C	10.4	mΩ						
Threshold voltage	V _{F(TO)}	T _J = 150 °C		0.85	V					
Maximum valvered lackage august		T _J = 25 °C	V Datad V	0.1	mA					
Maximum reverse leakage current	I _{RM}	T _J = 150 °C	V_R = Rated V_{RRM}	1.0						

THERMAL - MECHANICAL SPECIFICATIONS									
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS				
Maximum junction and stor temperature range	age	T _J , T _{Stg}		-40 to +150	°C				
Maximum thermal resistance junction to case	e,	R_{thJC}	DC operation	1.3	°C/W				
Typical thermal resistance, case to heatsink				0.5	C/VV				
Approximate weight	avavimata waisht			2	g				
Approximate weight				0.07	OZ.				
Mounting toward	minimum			6 (5)	kgf ⋅ cm				
Mounting torque	maximum			12 (10)	(lbf ⋅ in)				
			Consisted TO 200AC 0	20ETS08					
Marking daying			Case style TO-220AC 2L	20E	ΓS12				
Marking device			Consective TO 220AP 21	20A	TS08				
			Case style TO-220AB 3L	20A	ΓS12				

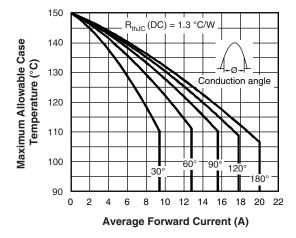


Fig. 1 - Current Rating Characteristics

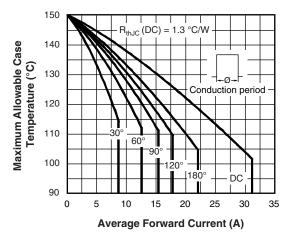


Fig. 2 - Current Rating Characteristics

Vishay Semiconductors

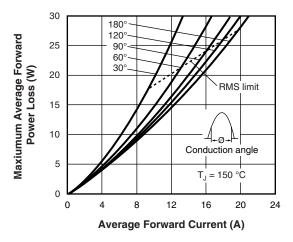


Fig. 3 - Forward Power Loss Characteristics

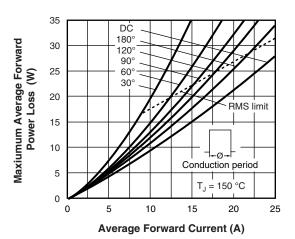


Fig. 4 - Forward Power Loss Characteristics

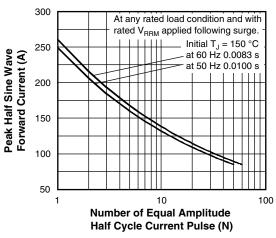


Fig. 5 - Maximum Non-Repetitive Surge Current

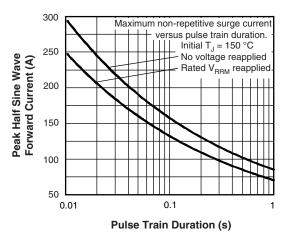


Fig. 6 - Maximum Non-Repetitive Surge Current

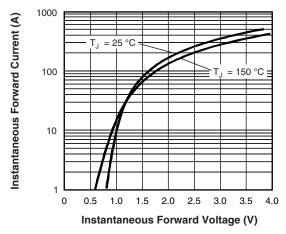


Fig. 7 - Forward Voltage Drop Characteristics

Vishay Semiconductors

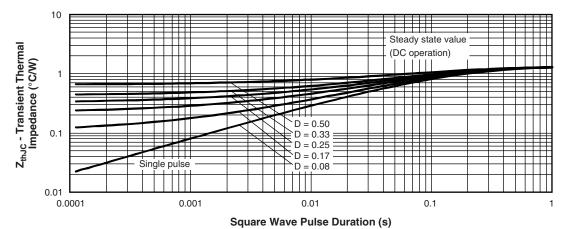


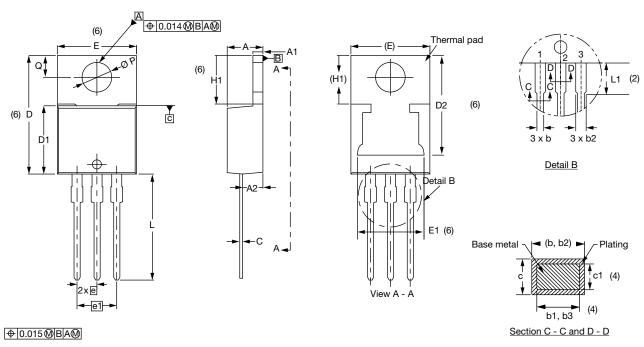
Fig. 8 - Thermal Impedance Z_{thJC} Characteristics

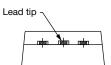
ORDERING INFORMATION TABLE

		I	I	I				
Device code	VS-	20	E	Т	S	12	-М3	
	1	2	3	4	5	6	7	
	1 -	- Vish	nay Sem	niconduc	ctors pro	duct		
	2 -	Cur	rent rati	ng (20 =	20 A)			
	3 -	Circ	uit conf	figuratio	n:			
		E =	2L TO-2	220AC				
		A =	3L TO-2	220AB				
	4 -	Pac	kage:					
		T =	TO-220					
	5 -	Тур	e of silio	con:				
		S =	standar	d recov	ery recti	fier	00	000.1/
	6 -	Volt	age cod	de x 100	$=V_{RRM}$: 800 V 1200 V
	7 -	Envi	ironmen	tal digit:				

ORDERING INFORMATION (Example)									
PREFERRED P/N	BASE QUANTITY	PACKAGING DESCRIPTION							
VS-20ATS08-M3	50	Antistatic plastic tubes							
VS-20ATS12-M3	50	Antistatic plastic tubes							
VS-20ETS08-M3	50	Antistatic plastic tubes							
VS-20ETS12-M3	50	Antistatic plastic tubes							

-M3 = halogen-free, RoHS-compliant, and terminations lead (Pb)-free


LINKS TO RELATED DOCUMENTS									
Dimensions	2L TO-220AC	www.vishay.com/doc?96156							
Differsions	3L TO-220AB	www.vishay.com/doc?96154							
Part marking information	2L TO-220AC	www.vishay.com/doc?95391							
Fait marking imormation	3L TO-220AB	www.vishay.com/doc?95028							
SPICE model		www.vishay.com/doc?96046							


Revision: 29-Nov-2021 4 Document Number: 96244

Vishay Semiconductors

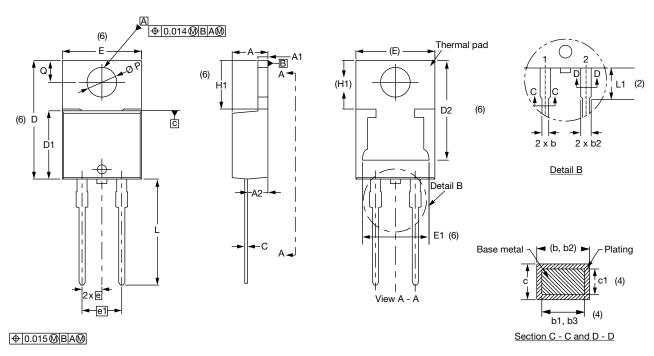
TO-220AB 3L

DIMENSIONS in millimeters and inches

Conforms to JEDEC® outline TO-220AB

SYMBOL	MILLIN	IETERS	INCHES		NOTES	NOTES		MILLIN	IETERS	INC	HES	NOTES
STMBOL	MIN.	MAX.	MIN.	MAX.	NOTES		SYMBOL	MIN.	MAX.	MIN.	MAX.	NOTES
Α	4.25	4.65	0.167	0.183			D2	11.68	13.30	0.460	0.524	6, 7
A1	1.14	1.40	0.045	0.055			Е	10.11	10.51	0.398	0.414	3, 6
A2	2.50	2.92	0.098	0.115			E1	6.86	8.89	0.270	0.350	6
b	0.69	1.01	0.027	0.040			е	2.41	2.67	0.095	0.105	
b1	0.38	0.97	0.015	0.038	4		e1	4.88	5.28	0.192	0.208	
b2	1.20	1.73	0.047	0.068			H1	6.09	6.48	0.240	0.255	6
b3	1.14	1.73	0.045	0.068	4		L	13.52	14.02	0.532	0.552	
С	0.36	0.61	0.014	0.024			L1	3.32	3.82	0.131	0.150	2
c1	0.36	0.56	0.014	0.022	4		ØΡ	3.54	3.91	0.139	0.154	
D	14.85	15.35	0.585	0.604	3		Q	2.60	3.00	0.102	0.118	
D1	8.38	9.02	0.330	0.355							•	

Notes


- (1) Dimensioning and tolerancing as per ASME Y14.5M-1994
- (2) Lead dimension and finish uncontrolled in L1
- (3) Dimension D, D1, and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- (4) Dimension b1, b3, and c1 apply to base metal only
- (5) Controlling dimensions: inches
- (6) Thermal pad contour optional within dimensions E, H1, D2, and E1
- $^{(7)}$ Outline conforms to JEDEC $^{\!(\!R\!)}$ TO-220, except D2

Revision: 14-Mar-2022 1 Document Number: 96154

Vishay Semiconductors

TO-220AC 2L

DIMENSIONS in millimeters and inches

Lead tip

Conforms to JEDEC® outline TO-220AC

SYMBOL	MILLIN	IETERS	INC	HES	NOTES	NOTES	SYMBOL	MILLIN	IETERS	INC	HES	NOTES
STMBOL	MIN.	MAX.	MIN.	MAX.	NOTES		STIVIBOL	MIN.	MAX.	MIN.	MAX.	NOTES
Α	4.25	4.65	0.167	0.183			D2	11.68	13.30	0.460	0.524	6, 7
A1	1.14	1.40	0.045	0.055			E	10.11	10.51	0.398	0.414	3, 6
A2	2.50	2.92	0.098	0.115			E1	6.86	8.89	0.270	0.350	6
b	0.69	1.01	0.027	0.040			е	2.41	2.67	0.095	0.105	
b1	0.38	0.97	0.015	0.038	4		e1	4.88	5.28	0.192	0.208	
b2	1.20	1.73	0.047	0.068			H1	6.09	6.48	0.240	0.255	6
b3	1.14	1.73	0.045	0.068	4		L	13.52	14.02	0.532	0.552	
С	0.36	0.61	0.014	0.024			L1	3.32	3.82	0.131	0.150	2
c1	0.36	0.56	0.014	0.022	4		ØΡ	3.54	3.91	0.139	0.154	
D	14.85	15.35	0.585	0.604	3		Q	2.60	3.00	0.102	0.118	
D1	8.38	9.02	0.330	0.355						•		

Notes

- (1) Dimensioning and tolerancing as per ASME Y14.5M-1994
- (2) Lead dimension and finish uncontrolled in L1
- (3) Dimension D, D1, and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- (4) Dimension b1, b3, and c1 apply to base metal only
- (5) Controlling dimensions: inches
- (6) Thermal pad contour optional within dimensions E, H1, D2, and E1
- $^{(7)}\,$ Outline conforms to JEDEC® TO-220, except D2

Revision: 07-Mar-2022 1 Document Number: 96156

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2022 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED