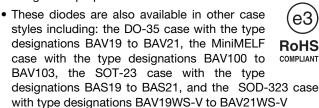


www.vishay.com

Vishay Semiconductors

Small Signal Switching Diodes, High Voltage

MECHANICAL DATA


Case: SOD-123

Weight: approx. 10.3 mg Packaging codes/options:

GS18/10K per 13" reel (8 mm tape), 10K/box GS08/3K per 7" reel (8 m tape), 15K/box

FEATURES

- Silicon epitaxial planar diodes
- For general purpose

RoHS

- AEC-Q101 qualified
- · Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

PARTS TABLE						
PART	TYPE DIFFERENTIATION			INTERNAL CONSTRUCTION	REMARKS	
BAV19W-V	V _R = 100 V	BAV19W-V-GS18 or BAV19W-V-GS08	A8	Single diode	Tape and reel	
BAV20W-V	V _R = 150 V	BAV20W-V-GS18 or BAV20W-V-GS08	A9	Single diode	Tape and reel	
BAV21W-V	V _R = 200 V	BAV21W-V-GS18 or BAV21W-V-GS08	AA	Single diode	Tape and reel	

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	PART	SYMBOL	VALUE	UNIT	
		BAV19W-V	V_R	100	V	
Continuous reverse voltage		BAV20W-V	V_R	150	V	
		BAV21W-V	V_R	200	V	
		BAV19W-V	V_{RRM}	120	V	
Repetitive peak reverse voltage		BAV20W-V	V_{RRM}	200	V	
		BAV21W-V	V_{RRM}	250	V	
DC Forward current (1)			I _F	250	mA	
Rectified current (average) half wave rectification with resist. load (1)			I _{F(AV)}	200	mA	
Repetitive peak forward current (1)	f ≥ 50Hz, θ = 180°		I _{FRM}	625	mA	
Surge forward current	t < 1 s, T _j = 25 °C		I _{FSM}	1	Α	
Power dissipation (1)	•		P _{tot}	410	mW	

THERMAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT		
Thermal resistance junction to ambient air (1)		R _{thJA}	375	°C/W		
Junction temperature (1)		T _j	150	°C		
Storage temperature range (1)		T _{stq}	- 65 to + 150	°C		

Note

⁽¹⁾ Valid provided that leads are kept at ambient temperature

Vishay Semiconductors

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Company voltage	I _F = 100 mA		V_{F}			1	V
Forward voltage	I _F = 200 mA		V _F			1.25	V
	V _R = 100 V	BAV19W-V	I _R			100	nA
	V _R = 100 V, T _j = 100 °C	BAV19W-V	I _R			15	μΑ
Lookaga ayyyant	V _R = 150 V	BAV20W-V	I _R			100	nA
Leakage current	V _R = 150 V, T _j = 100 °C	BAV20W-V	I _R			15	μΑ
	V _R = 200 V	BAV21W-V	I _R			100	nA
	V _R = 200 V, T _j = 100 °C	BAV21W-V	I _R			15	μΑ
Dynamic forward resistance	I _F = 10 mA		r _f		5		Ω
Diode capacitace	V _R = 0, f = 1 MHz		C _D		1.5		pF
Reverse recovery time	I_F = 30 mA, I_R = 30 mA, I_R = 3 mA, I_L = 100 Ω		t _{rr}			50	ns

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

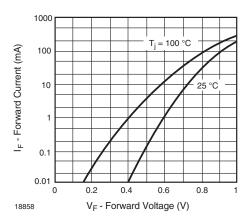


Fig. 1 - Forward Current vs. Forward Voltage

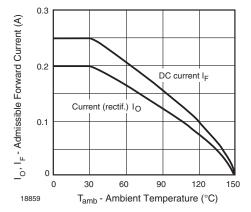


Fig. 2 - Admissible Forward Current vs. Ambient Temperature

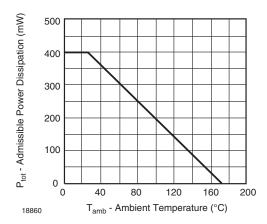


Fig. 3 - Admissible Power Dissipation vs. Ambient Temperature

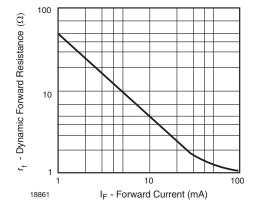
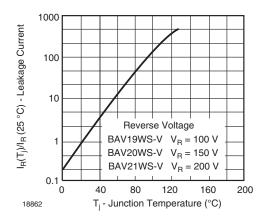
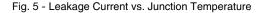




Fig. 4 - Dynamic Forward Resistance vs. Forward Current

Vishay Semiconductors

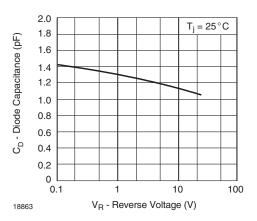


Fig. 6 - Capacitance vs. Reverse Voltage

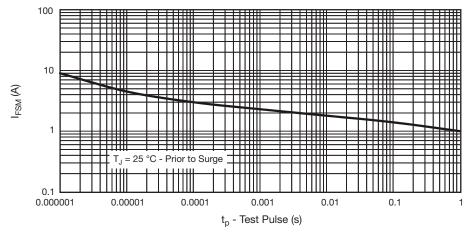
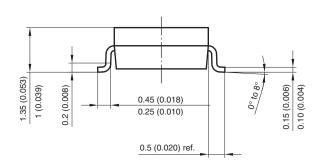
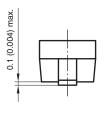
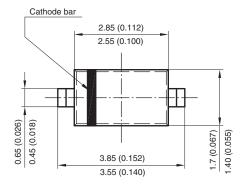
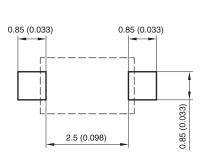




Fig. 7 - Non-Repetitive Peak Forward Current vs. Pulse Duration Maximum Admissible Values of Square Pulse


Vishay Semiconductors


PACKAGE DIMENSIONS in millimeters (inches): SOD-123

Mounting Pad Layout

Rev. 4 - Date: 24. Sep. 2009 Document no.: S8-V-3910.01-001 (4)

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.