

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is and its officers, employees, even if such claim any manner.

MM74HC589 8-Bit Shift Registers with Input Latches and 3-STATE Serial Output

FAIRCHILD

SEMICONDUCTOR

MM74HC589 8-Bit Shift Registers with Input Latches and 3-STATE Serial Output

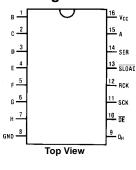
General Description

The MM74HC589 high speed shift register utilizes advanced silicon-gate CMOS technology to achieve the high noise immunity and low power consumption of standard CMOS integrated circuits, as well as the ability to drive 15 LS-TTL loads.

The MM74HC589 comes in a 16-pin package and consists of an 8-bit storage latch feeding a parallel-in, serial-out 8bit shift register. Data can also be entered serially the shift register through the SER pin. Both the storage register and shift register have positive-edge triggered clocks, RCK and SCK, respectively. SLOAD pin controls parallel LOAD or serial shift operations for the shift register. The shift register has a 3-STATE output to enable the wire-ORing of multiple devices on a serial bus.

The 74HC logic family is speed, function, and pin-out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to $\rm V_{CC}$ and ground.

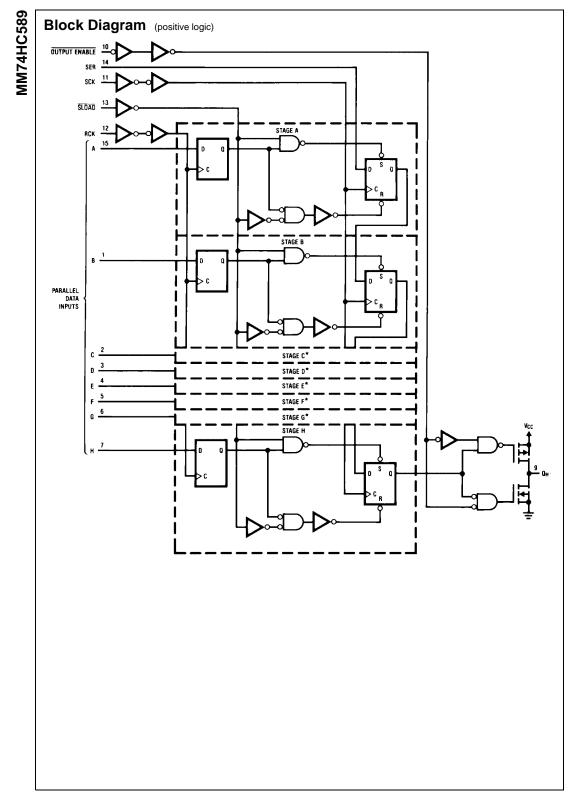
Features


- 8-bit parallel storage register inputs
- Wide operating voltage range: 2V–6V
- Shift register has direct overriding load
- Guaranteed shift frequency. . . DC to 30 MHz
- Low quiescent current: 80 µA maximum (74HC Series)
- 3-STATE output for 'Wire-OR'

Ordering Code:

Order Number	Package Number	Package Description
MM74HC589M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC589SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC589N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.


Connection Diagram

Truth Table

RCK	scк	SLOAD	OE	Function
Х	Х	Х	Н	Q _H in Hi-Z State
Х	х	Х	L	Q _H is enabled
\uparrow	Х	Х	Х	Data loaded into input latches
\uparrow	Х	L	Х	Data loaded into shift register
				from pins
H or L	Х	L	Х	Data loaded from latches to
				shift register
Х	Ŷ	н	Х	Shift register is shifted. Data
				on SER pin is shifted in.
\uparrow	Ŷ	Н	Х	Data is shifted in shift register,
				and data is loaded into latches

© 2001 Fairchild Semiconductor Corporation DS005368

Absolute Maximum Ratings(Note 1)

Recommended Operating Conditions

(Note 2)	-
Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	-1.5 to V _{CC} +1.5V
DC Output Voltage (V _{OUT})	–0.5 to V _{CC} +0.5V
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V_{CC} or GND Current, per pin (I _{CC})	±50 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage			
(V _{IN} , V _{OUT})	0	V _{CC}	V
Operating Temperature Range (T_A)	-40	+85	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0 V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns
Note 1: Absolute Maximum Ratings are those age to the device may occur.	values be	yond whic	ch dam-

MM74HC589

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 4)

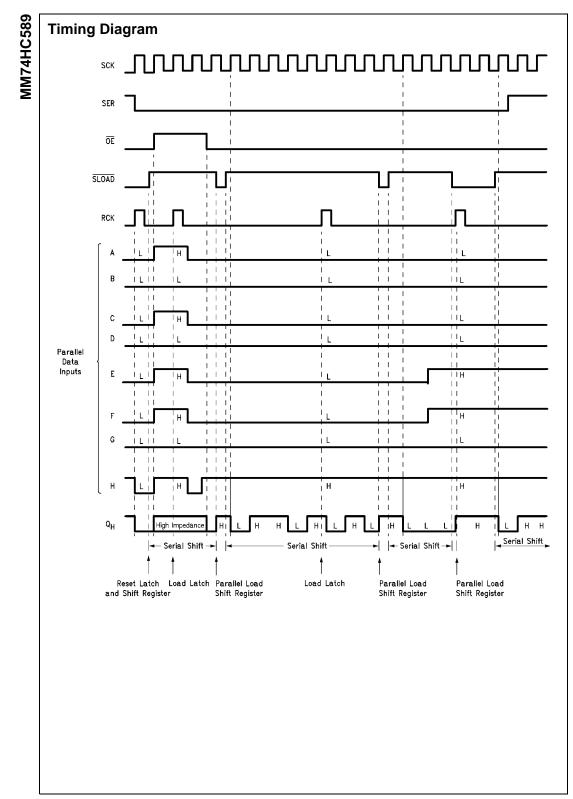
Symbol	Parameter	Conditions	Vcc	T _A =	25°C	$T_A = -40$ to $85^\circ C$	$T_A=-55$ to $125^\circ C$	Units
Symbol	Falameter	Conditions	•cc	Тур		Guaranteed L	imits	Units
V _{IH}	Minimum HIGH Level		2.0V		1.5	1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	V
V _{IL}	Maximum LOW Level		2.0V		0.5	0.5	0.5	V
	Input Voltage		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	V
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	2.0	1.9	1.9	1.9	V
			4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$						
		$ I_{OUT} \le 6.0 \text{ mA}$	4.5V		3.98	3.84	3.7	V
		$ I_{OUT} \le 7.8 \text{ mA}$	6.0V		5.48	5.34	5.2	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	0	0.1	0.1	0.1	V
			4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$						
		$ I_{OUT} \le 6.0 \text{ mA}$	4.5V		0.26	0.33	0.4	V
		$ I_{OUT} \le 7.8 \text{ mA}$	6.0V		0.26	0.33	0.4	V
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	±1.0	μΑ
	Current							
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	6.0V		8.0	80	160	μΑ
	Supply Current	$I_{OUT} = 0 \ \mu A$						
I _{OZ}	Maximum 3-STATE	Output in High	6.0V		±0.5	±5.0	±10.0	μΑ
	Leakage Current	Impedance State						
		$V_{IN} = V_{IL} \text{ or } V_{IH}$						ĺ
		$V_{OUT} = V_{CC} \text{ or } GND$						İ
		$\overline{OE} = V_{IH}$						1

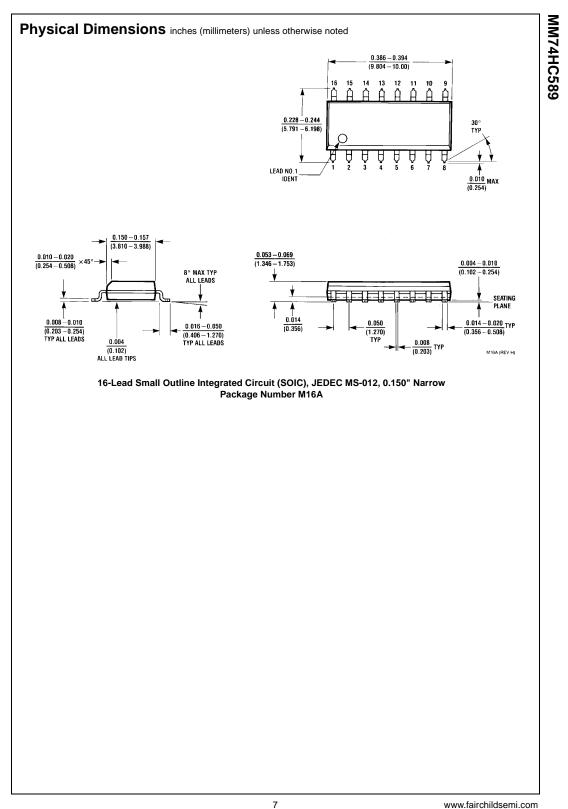
Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC}=5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

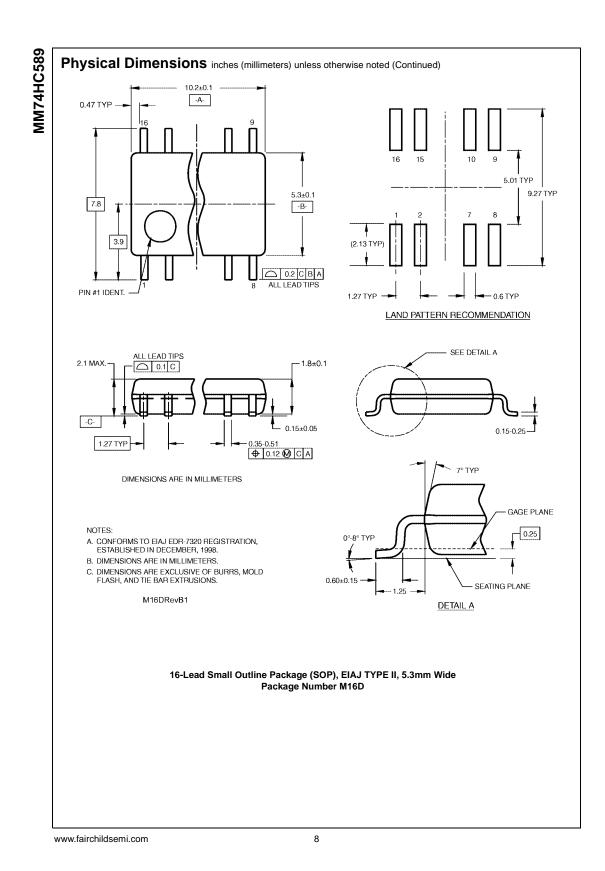
AC Electrical Characteristics

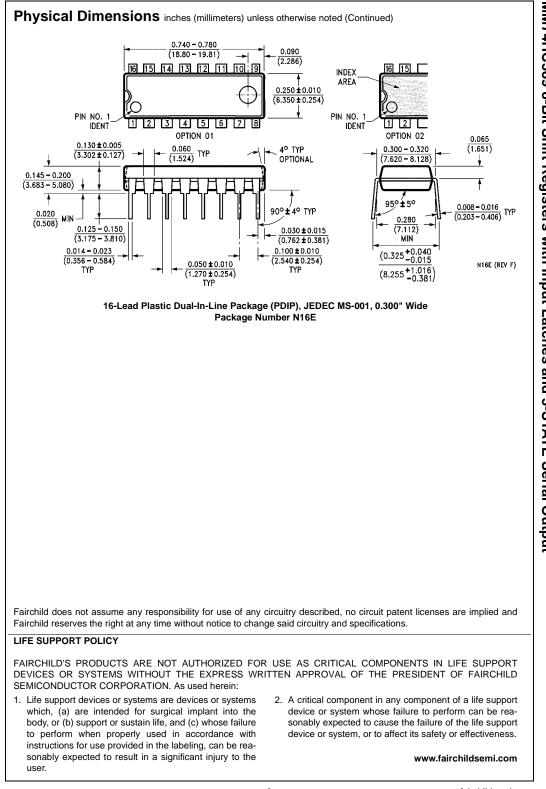
Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
f _{MAX}	Maximum Operating Frequency for SCK		50	30	MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay from SCK to QH'			30	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay from $\overline{\text{SLOAD}}$ to $\text{Q}_{\text{H}'}$			30	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay from LCK to QH'	SLOAD = logic "0"	25	45	ns
t _{PZH} , t _{PZL}	Output Enable Time	$R_L = 1 k\Omega$	18	28	ns
t _{PHZ} , t _{PLZ}	Output Disable Time	$R_L = 1 \ k\Omega, \ C_L = 5 \ pF$	19	25	ns
t _S	Minimum Setup Time from RCK to SCK		10	20	ns
t _S	Minimum Setup Time from SER to SCK		10	20	ns
t _S	Minimum Setup Time from Inputs A thru H to RCK		10	20	ns
t _H	Minimum Hold Time		0	5	ns
tw	Minimum Pulse Width SCK, RCK, SLOAD		8	16	ns

AC Electrical Characteristics


 V_{CC} = 2.0–6V, C_L = 50 pF, t_r = t_f = 6 ns (unless otherwise specified)


Symbol	Parameter	Conditions	Vcc	$T_A = 25^{\circ}C$		$T_A = -40 \text{ to } 85^{\circ}\text{C}$ $T_A = -55 \text{ to } 125^{\circ}\text{C}$		
Gymbol	i alameter	Conditions	- 00	Тур	Guaranteed Limits			Units
f _{MAX}	Maximum Operating		2.0V		6	4.8	4	MH
	Frequency for SCK		4.5V		30	24	20	MH
			6.0V		35	28	24	MH
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	62	175	220	265	ns
	Delay from SCK or		4.5V	20	35	44	53	ns
	SLOAD to Q _H		6.0V	18	30	37	45	ns
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	120	225	280	340	ns
	Delay from SCK or	C _L = 150 pF	4.5V	31	45	56	68	ns
	SLOAD to Q _H		6.0V	28	38	48	58	ns
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	80	210	265	315	ns
	Delay from RCK to Q _H		4.5V	25	42	53	63	ns
			6.0V	21	36	45	54	ns
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	80	210	265	313	ns
	Delay RCK to Q _H	C _L = 150 pF	4.5V	25	52	66	77	ns
			6.0V	21	44	56	66	ns
t _{PZH} , t _{PZL}	Output Enable Time	$R_L = 1 k\Omega$	2.0V	70	150	189	224	ns
		-	4.5V	22	30	38	45	ns
			6.0V	20	26	32	38	ns
t _{PHZ} , t _{PLZ}	Output Disable Time	$R_L = 1 k\Omega$	2.0V	70	150	189	224	ns
		-	4.5V	22	30	38	45	ns
			6.0V	20	26	32	38	ns
ts	Minimum Setup Time		2.0V		100	125	150	ns
0	from RCK to SCK		4.5V		20	25	30	ns
			6.0V		17	22	25	ns
ts	Minimum Setup Time		2.0V		100	125	150	ns
5	from SER to SCK		4.5V		20	25	30	ns
			6.0V		17	22	25	ns
ts	Minimum Setup Time		2.0V		100	125	150	ns
-5	from Inputs A thru H		4.5V		20	25	30	ns
	to RCK		6.0V		17	22	25	ns
t _H	Minimum Hold Time		2.0V	-5	5	5	5	ns
·n			4.5V	0	5	5	5	ns
			4.5V 6.0V	1	5	5	5	ns
t _W	Minimum Pulse Width		2.0V	30	80	100	120	ns
٠vv	SCK, RCK, SLOAD,		4.5V	9	16	20	24	ns
	SLOAD		4.5V 6.0V	9 8	16	20 17	24 20	ns


AC Electrical Characteristics (Continued)


Symbol	Parameter	Conditions	v _{cc}	$T_A = 25^{\circ}C$		$T_A = -40$ to $85^{\circ}C$ $T_A = -55$ to 125		Units
Symbol	raiameter		•00	Тур		Guaranteed L	imits	Units
t _r , t _f	Maximum Input Rise and		2.0V		1500	1500	1500	ns
	Fall Time, Clock		4.5V		500	500	500	ns
			6.0V		400	400	400	ns
t _{THL} , t _{TLH}	Maximum Output		2.0V	25	60	75	90	ns
	Rise and Fall Time		4.5V	6	12	15	18	ns
			6.0V	5	10	12	15	ns
C _{PD}	Power Dissipation			87				pF
	Capacitance (Note 5)							
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF
C _{OUT}	Maximum Output Capacitance			15	20	20	20	pF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} sf + I_{CC}$.

MM74HC589 8-Bit Shift Registers with Input Latches and 3-STATE Serial Output

9

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.