

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]

Function Select Table				Pin Descriptions	
S_{2}	S_{1}	S_{0}	Function	Pin Names	Description
L	L	L	Parallel Load	CP	Clock Pulse Input
L	L	H	Complement	$\overline{\mathrm{CEP}}$	Count Enable Parallel Input (Active Low)
L	H	L	Shift Left	$\mathrm{D}_{0} / \overline{\mathrm{CET}}$	Serial Data Input/Count Enable
L	H	H	Shift Right		Trickle Input (Active LOW)
H	L	L	Count Down	$\mathrm{S}_{0}-\mathrm{S}_{2}$	Select Inputs
H	L	H	Clear	MR	Master Reset Input
H	H	L	Count Up	$\mathrm{P}_{0}-\mathrm{P}_{3}$	Preset Inputs
H	H	H	Hold	D_{3}	Serial Data Input
				$\overline{\mathrm{TC}}$	Terminal Count Output
				$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Data Outputs
				$\overline{\mathrm{Q}}_{0}-\overline{\mathrm{Q}}_{3}$	Complementary Data Outputs

Truth Table

$\mathrm{Q}_{0}=$ LSB

Inputs								Outputs					
MR	S_{2}	S_{1}	S_{0}	CEP	$\mathrm{D}_{0} / \overline{\mathrm{CET}}$	D_{3}	CP	Q_{3}	Q_{2}	Q_{1}	Q_{0}	TC	Mode
L	L	L	L	X	X	X	-	P_{3}	P_{2}	P_{1}	P_{0}	L	Preset (Parallel Load)
L	L	L	H	X	X	X	-	\bar{Q}_{3}	\bar{Q}_{2}	\bar{Q}_{1}	\bar{Q}_{0}	L	Invert
L	L	H	L	X	X	X	-	D_{3}	Q_{3}	Q_{2}	Q_{1}	D_{3}	Shift to LSB
L	L	H	H	X	X	X	\sim	Q_{2}	Q_{1}	Q_{0}	D_{0}	Q_{3} (Note 1)	Shift to MSB
$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{L} \\ \mathrm{~L} \\ \mathrm{~L} \end{array}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \hline L \\ & L \\ & H \end{aligned}$	$\begin{array}{\|l\|} \hline X \\ X \\ X \end{array}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{array}{\|l\|} \hline\left(Q_{0}\right. \\ \hline Q_{3} \\ Q_{3} \end{array}$	$\begin{aligned} & 0-3) \\ & Q_{2} \\ & Q_{2} \end{aligned}$	$\begin{aligned} & \text { minus } \\ & Q_{1} \\ & Q_{1} \end{aligned}$	$\begin{aligned} & Q_{0} 1 \\ & Q_{0} \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & H \end{aligned}$	Count Down Count Down with $\overline{\mathrm{CEP}}$ not active Count Down with $\overline{\mathrm{CET}}$ not active
L	H	L	H	X	X	X	\sim	L	L	L	L	H	Clear
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{L} \\ \mathrm{~L} \\ \mathrm{~L} \end{array}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{array}{l\|} \hline X \\ X \\ X \end{array}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & Q_{3} \\ & Q_{3} \end{aligned}$	$\begin{aligned} & \left.Q_{0-3}\right) \\ & Q_{2} \\ & Q_{2} \end{aligned}$	$\begin{aligned} & \text { plus } \\ & Q_{1} \\ & Q_{1} \end{aligned}$	$\begin{aligned} & Q_{0} \\ & Q_{0} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & H \end{aligned}$	Count Up Count Up with $\overline{\mathrm{CEP}}$ not active Count Up with CET not active
L	H	H	H	X	X	X	X	Q_{3}	Q_{2}	Q_{1}	Q_{0}	H	Hold
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{array}{\|c\|} \hline \text { L } \\ \text { H } \\ H \end{array}$	$\begin{array}{\|c\|} \hline \text { L } \\ \text { L } \\ \text { H } \\ \text { H } \\ \text { L } \\ \text { L } \\ \text { L } \\ \text { H } \\ \text { H } \end{array}$	L	X X X X X X X X X	X X X X L H X X X	X X X	X X X X X X X X X X X X	L L L L L L L L L				$\begin{gathered} \mathrm{L} \\ \mathrm{~L} \\ \mathrm{~L} \\ \mathrm{~L} \\ \mathrm{~L} \\ \mathrm{H} \\ \mathrm{H} \\ \mathrm{H} \\ \mathrm{H} \end{gathered}$	Asynchronous Master Reset

$1=L$ if $Q_{0}-Q_{3}=\mathrm{LLLL}$
H if $Q_{0}-Q_{3} \neq L L L L$
$2=L$ if $Q_{0}-Q_{3}=H H H H$
H if $\mathrm{Q}_{0}-\mathrm{Q}_{3} \neq \mathrm{HHHH}$
$\mathrm{H}=$ HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
$\sim=$ LOW-to-HIGH Transition
Note 1: Before the clock, $\overline{\mathrm{TC}}$ is Q_{3} After the clock, $\overline{\mathrm{TC}}$ is Q_{2}

Absolute Maximum Ratings	
(Note 2$)$	
Storage Temperature $\left(T_{\text {STG }}\right)$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$	$+150^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {EE }}$ Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	$\mathrm{V}_{\text {EE }}$ to +0.5 V
Output Current (DC Output HIGH)	-50 mA
ESD (Note 3)	$\geq 2000 \mathrm{~V}$

Recommended Operating Conditions

Case Temperature (T_{C})	
Commercial	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage (V_{EE})	-5.7 V to -4.2 V
Note 2: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.	
Note 3: ESD testing conforms to	3015.

Commercial Version

DC Electrical Characteristics (Note 4)
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH} \text { (Max) }}$	Loading with
V_{OL}	Output LOW Voltage	-1830	-1705	-1620	mV	or $\mathrm{V}_{\text {IL }}$ (Min)	50Ω to -2.0V
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Min})}$	Loading with
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610	mV	or V_{IL} (Max)	50Ω to -2.0V
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$	
I_{IH}	Input HIGH Current			240	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
I_{EE}	Power Supply Current	-165		-80		Inputs Open	

Note 4: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version (Continued) DIP AC Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$									
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=\mathbf{0}^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {SHIFT }}$	Shift Frequency	300		300		300		MHz	Figures 2, 3
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $C P$ to Q_{n}, \bar{Q}_{n}	1.00	2.00	1.00	2.00	1.00	2.00	ns	Figures 1, 3 (Note 5)
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP to $\overline{T C}$ (Shift)	2.10	3.50	2.10	3.50	2.10	3.70	ns	Figures 1, 7, 8 (Note 5)
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP to $\overline{T C}$ (Count)	2.40	4.40	2.40	4.40	2.60	4.70	ns	Figures 1, 9 (Note 5)
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $M R$ to Q_{n}, \bar{Q}_{n}	1.40	2.50	1.40	2.50	1.50	2.60	ns	Figures 1, 4 (Note 5)
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay MR to $\overline{\mathrm{TC}}$ (Count)	2.80	5.10	2.90	5.20	3.10	5.50	ns	Figures 1, 12 (Note 5)
$\mathrm{t}_{\text {PHL }}$	Propagation Delay MR to $\overline{T C}$ (Shift)	2.40	4.00	2.40	4.00	2.50	4.10	ns	Figures 1, 10, 11 (Note 5)
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\mathrm{D}_{0} / \overline{\mathrm{CET}}$ to $\overline{\mathrm{TC}}$	1.80	3.10	1.80	3.10	1.90	3.30	ns	Figures 1, 5
$\begin{aligned} & \overline{t_{\mathrm{PLH}}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay S_{n} to $\overline{T C}$	1.90	4.10	1.90	4.10	2.10	4.40	ns	(Note 5)
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.20	0.35	1.20	0.35	1.20	ns	Figures 1, 3
t_{s}		$\begin{aligned} & 1.00 \\ & 1.50 \\ & 1.30 \\ & 1.40 \\ & 3.40 \\ & 2.60 \end{aligned}$		$\begin{aligned} & 1.00 \\ & 1.50 \\ & 1.30 \\ & 1.40 \\ & 3.40 \\ & 2.60 \end{aligned}$		$\begin{aligned} & 1.00 \\ & 1.50 \\ & 1.30 \\ & 1.40 \\ & 3.40 \\ & 2.60 \end{aligned}$		ns	Figures 6, 4
t_{H}	$\begin{array}{\|l} \text { Hold Time } \\ D_{3} \\ P_{n} \\ D_{0} / \overline{C E T} \\ \overline{C E P} \\ S_{n} \end{array}$	$\begin{aligned} & 0.40 \\ & 0.30 \\ & 0.30 \\ & 0.20 \\ & 0.10 \end{aligned}$		$\begin{aligned} & 0.40 \\ & 0.30 \\ & 0.30 \\ & 0.20 \\ & 0.10 \end{aligned}$		$\begin{aligned} & 0.40 \\ & 0.30 \\ & 0.30 \\ & 0.20 \\ & 0.10 \end{aligned}$		ns	Figure 6
$\overline{t_{\text {PW }}(\mathrm{H})}$	Pulse Width HIGH CP, MR	2.00		2.00		2.00		ns	Figures 3, 4

[^1]

Industrial Version								
PLCC DC Electrical Characteristics (Note 8)								
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$								
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max			
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH} \text { (Max) }} \\ & \text { or } \mathrm{V}_{\mathrm{IL} \text { (Min) }} \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mV		
$\mathrm{V}_{\text {OHC }}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\operatorname{Min})} \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\mathrm{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1565		-1610	mV		
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for All Inputs	
$\mathrm{I}_{\text {IL }}$	Input LOW Current	0.50		0.50		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	
IIH	Input HIGH Current		240		240	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
I_{EE}	Power Supply Current	-165	-75	-165	-80	mA	Inputs Open	
Note 8: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.								

PLCC AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
${ }_{\text {f SHIFT }}$	Shift Frequency	325		350		350		MHz	Figures 2, 3
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay $C P$ to Q_{n}, \bar{Q}_{n}	1.00	1.80	1.00	1.80	1.00	1.80	ns	Figures 1, 3 (Note 9)
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay CP to $\overline{T C}$ (Shift)	2.00	3.30	2.10	3.30	2.10	3.50	ns	Figures 1, 7, 8 (Note 9)
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay CP to $\overline{T C}$ (Count)	2.40	4.20	2.40	4.20	2.60	4.50	ns	Figures 1, 9 (Note 9)
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay $M R$ to Q_{n}, \bar{Q}_{n}	1.40	2.30	1.40	2.30	1.50	2.40	ns	Figures 1, 4 (Note 9)
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay MR to $\overline{\text { TC }}$ (Count)	2.80	4.90	2.90	5.00	3.10	5.30	ns	Figures 1, 12 (Note 9)
$\mathrm{t}_{\text {PHL }}$	Propagation Delay MR to $\overline{\text { TC }}$ (Shift)	2.40	3.80	2.40	3.80	2.50	3.90	ns	Figures 1, 10, 11 (Note 9)
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay $\mathrm{D}_{0} / \overline{\mathrm{CET}}$ to $\overline{\mathrm{TC}}$	1.70	2.90	1.80	2.90	1.90	3.10	ns	Figures 1, 5
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	$\begin{aligned} & \text { Propagation Delay } \\ & \mathrm{S}_{\mathrm{n}} \text { to } \overline{\mathrm{TC}} \end{aligned}$	1.80	3.90	1.90	3.90	2.10	4.20	ns	(Note 9)
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.20	1.90	0.35	1.10	0.35	1.10	ns	Figures 1, 3
t_{s}	Setup Time D_{3} P_{n} $D_{0} / \overline{C E T}$ $\overline{C E P}$ S_{n} MR (Release Time)	$\begin{aligned} & 1.40 \\ & 1.70 \\ & 1.80 \\ & 1.80 \\ & 3.30 \\ & 2.60 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 1.40 \\ & 1.20 \\ & 1.30 \\ & 3.30 \\ & 2.50 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 1.40 \\ & 1.20 \\ & 1.30 \\ & 3.30 \\ & 2.50 \end{aligned}$		ns	Figure 6
t_{H}	Hold Time D_{3} P_{n} $D_{0} / \overline{C E T}$ $\overline{C E P}$ S_{n}	$\begin{aligned} & 0.90 \\ & 1.00 \\ & 0.70 \\ & 0.60 \\ & 0.00 \end{aligned}$		$\begin{aligned} & 0.30 \\ & 0.20 \\ & 0.20 \\ & 0.10 \\ & 0.00 \end{aligned}$		$\begin{aligned} & 0.30 \\ & 0.20 \\ & 0.20 \\ & 0.10 \\ & 0.00 \end{aligned}$		ns	Figure 6
$t_{\text {tpw }}(\mathrm{H})$	Pulse Width HIGH CP, MR	2.20		2.00		2.00		ns	Figures 3, 4
Note 9: The propagation delay specified is for single output switching. Delays may vary up to 250 ps with multiple outputs switching.									

Notes:
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$L 1, L 2$ and $L 3=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
FIGURE 1. AC Test Circuit

Notes:
For shift right mode, +1.05 V is applied at S_{0}.
The feedback path from output to input should be as short as possible
FIGURE 2. Shift Frequency Test Circuit (Shift Left)

 Package Number V28A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loca Sales Representative

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

[^1]: Note 5: The propagation delay specified is for single output switching. Delays may vary up to 250 ps with multiple outputs switching

