Power MOSFET 120 Amps, 60 Volts N-Channel D²PAK, TO-220

Features

- Low R_{DS(on)}
- High Current Capability
- Avalanche Energy Specified
- AEC Q101 Qualified NVB5426N
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Power Supplies
- Converters
- Power Motor Controls
- Bridge Circuits

MAXIMUM RATINGS (T_J = 25°C Unless otherwise specified)

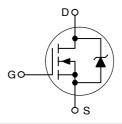
Parameter			Symbol	Value	Unit
Drain-to-Source Volta	Drain-to-Source Voltage			60	V
Gate-to-Source Voltage	ge – Conti	nuous	V _{GS}	±20	V
Gate-to-Source Volta (T _P < 10 μs)	ge – Nonre	epetitive	V_{GS}	30	٧
Continuous Drain	Steady State	T _C = 25°C	I _D	120	Α
Current R _{θJC} (Note 1)	State	T _C = 100°C		85	
Power Dissipation $R_{\theta JC}$ (Note 1)	Steady State	T _C = 25°C	P _D	215	W
Pulsed Drain Current	t _p	= 10 μs	I _{DM}	260	Α
Operating and Storage Temperature Range			T _J , T _{stg}	-55 to +175	°C
Source Current (Body Diode)			Is	60	Α
Single Pulse Drain-to-Source Avalanche Energy – Starting T_J = 25°C (V_{DD} = 50 V_{dc} , V_{GS} = 10 V_{dc} , $I_{L(pk)}$ = 70 A, L = 0.3 mH, R_G = 25 Ω)			E _{AS}	735	mJ
Lead Temperature for Purposes, 1/8" from C		Seconds	T _L	260	°C

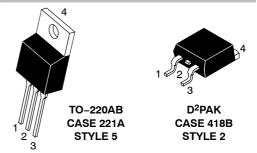
THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Case (Drain) Steady State (Note 1)	$R_{ heta JC}$	0.7	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

 Surface mounted on FR4 board using 1 sq in pad size, (Cu Area 1.127 sq in [1 oz] including traces).




ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX (Note 1)
60 V	6.0 mΩ @ 10 V	120 A

N-Channel

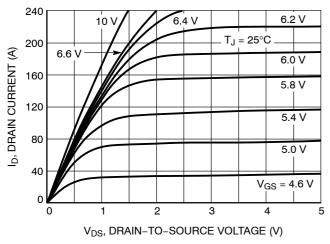
MARKING DIAGRAMS & PIN ASSIGNMENTS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C Unless otherwise specified)

Characteristics	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{DS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		60			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				64		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V T _J = 25°C				1.0	μΑ
		$V_{DS} = 60 \text{ V}$	T _J = 150°C			25	1
Gate-Body Leakage Current	I _{GSS}	V _{DS} = 0 V, V	′ _{GS} = ±20 V			±100	nA
ON CHARACTERISTICS (Note 2)				-		-	
Gate Threshold Voltage	V _{GS(th)}	$V_{GS} = V_{DS}$	I _D = 250 μA	2.0	3.1	4.0	V
Negative Threshold Temperature Coefficient	V _{GS(th)} /T _J				9.2		mV/°C
Drain-to-Source On Voltage	V _{DS(on)}	V _{GS} = 10 \	/, I _D = 60 A		0.3	0.36	V
		V _{GS} = 10 V, I _D	= 60 A, 150°C		0.6		
Static Drain-to-Source On-Resistance	R _{DS(on)}	V _{GS} = 10 \	/, I _D = 60 A		4.9	6.0	mΩ
Forward Transconductance	9 _{FS}	V _{DS} = 15 V, I _D = 20 A			65		S
CHARGES, CAPACITANCES & GATE RESIST	ANCE			I		I	<u> </u>
Input Capacitance	C _{iss}	V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz			5800		pF
Output Capacitance	C _{oss}				1000		-
Transfer Capacitance	C _{rss}				370		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 48 V,			150	170	nC
Threshold Gate Charge	Q _{G(TH)}	I _D =	60 A		6.0		1
Gate-to-Source Charge	Q _{GS}				28		1
Gate-to-Drain Charge	Q_{GD}				67		1
SWITCHING CHARACTERISTICS, V _{GS} = 10 V	(Note 3)			I	•	I	
Turn-On Delay Time	t _{d(on)}	V _{GS} = 10 V,	V _{DD} = 48 V,		15		ns
Rise Time	t _r	I _D = 60 A, I	$R_G = 3.0 \Omega$		100		
Turn-Off Delay Time	t _{d(off)}				105		
Fall Time	t _f				95		1
DRAIN-SOURCE DIODE CHARACTERISTICS	3						
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V	T _J = 25°C		0.88	1.1	V_{dc}
		I _S = 60 A	T _J = 100°C		0.78		1
Reverse Recovery Time	t _{rr}	I _S = 60 A _{dc} ,	$V_{GS} = 0 V_{dc}$		75		ns
Charge Time	ta	dl _S /dt =	100 A/μs		50		┪
Discharge Time	t _b				25		1
Reverse Recovery Stored Charge	Q _{RR}				235		μС

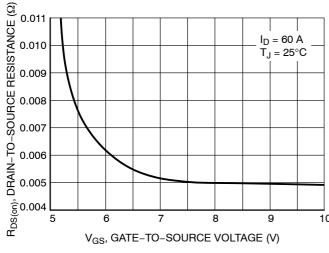

ORDERING INFORMATION

Device	Package	Shipping [†]
NTP5426N	TO-220AB (Pb-Free)	50 Units / Rail
NTB5426NT4G	D ² PAK (Pb-Free)	800 / Tape & Reel
NVB5426NT4G	D ² PAK (Pb-Free)	800 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS



240 $V_{DS} \ge 10 \text{ V}$ 200 ID, DRAIN CURRENT (A) 160 120 T_J = 125°C 80 T_J = 25°C 40 = -55°C 0 3 5 6

Figure 1. On-Region Characteristics

V_{GS}, GATE-TO-SOURCE VOLTAGE (V) Figure 2. Transfer Characteristics

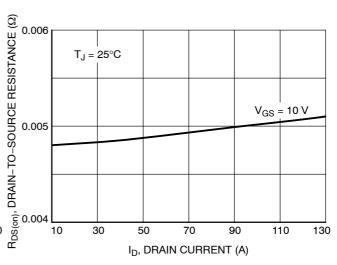
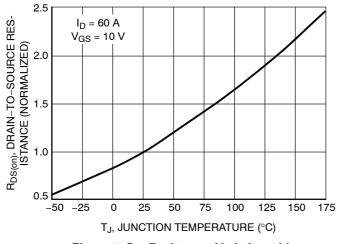



Figure 3. On-Resistance vs. Gate Voltage

Figure 4. On-Resistance vs. Drain Current and **Gate Voltage**

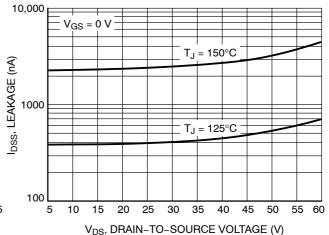


Figure 5. On-Resistance Variation with **Temperature**

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

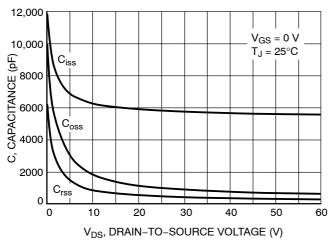


Figure 7. Capacitance Variation

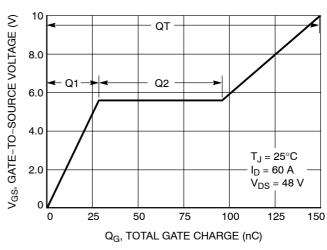


Figure 8. Gate-to-Source Voltage vs. Total Charge

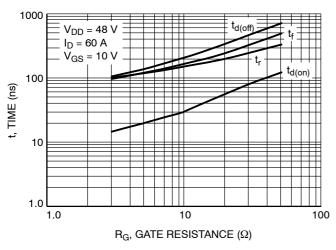


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

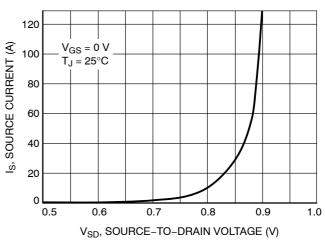


Figure 10. Diode Forward Voltage vs. Current

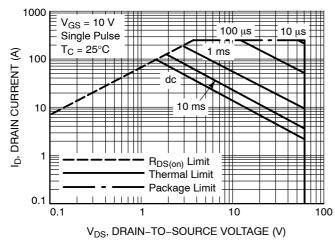


Figure 11. Maximum Rated Forward Biased Safe Operating Area

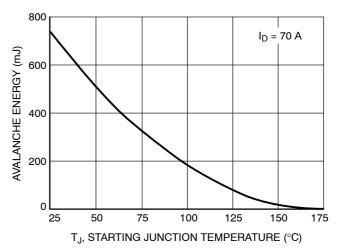


Figure 12. Maximum Avalanche Energy vs. Starting Junction Temperature

TYPICAL CHARACTERISTICS

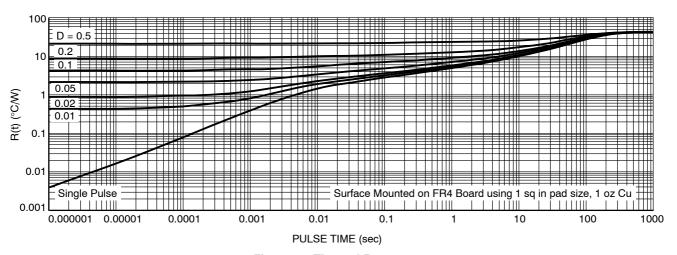
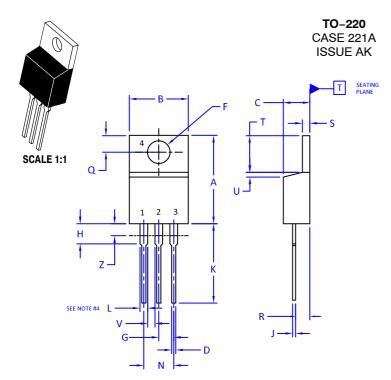



Figure 13. Thermal Response

DATE 13 JAN 2022

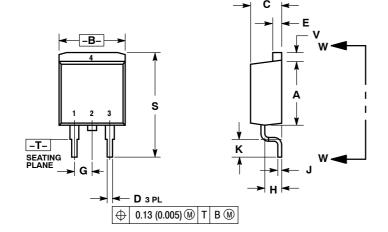
NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: INCHES
- 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.
- 4. MAX WIDTH FOR F102 DEVICE = 1.35MM

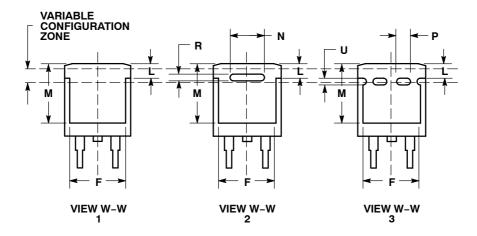
	INCHES		MILLIME	TERS
DIM	MIN.	MAX.	MIN.	MAX.
Α	0.570	0.620	14.48	15.75
В	0.380	0.415	9.66	10.53
С	0.160	0.190	4.07	4.83
۵	0.025	0.038	0.64	0.96
F	0.142	0.161	3.60	4.09
G	0.095	0.105	2.42	2.66
Н	0.110	0.161	2.80	4.10
J	0.014	0.024	0.36	0.61
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.41
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Z		0.080		2.04

STYLE 1: PIN 1. 2. 3. 4.	BASE COLLECTOR EMITTER COLLECTOR	STYLE 2: PIN 1. 2. 3. 4.	BASE EMITTER COLLECTOR EMITTER	STYLE 3: PIN 1. 2. 3. 4.	ANODE GATE	STYLE 4: PIN 1. 2. 3. 4.	MAIN TERMINAL 1 MAIN TERMINAL 2 GATE MAIN TERMINAL 2
STYLE 5: PIN 1. 2. 3. 4.	DRAIN	STYLE 6: PIN 1. 2. 3. 4.		STYLE 7: PIN 1. 2. 3. 4.	ANODE CATHODE	2. 3.	ANODE EXTERNAL TRIP/DELAY
STYLE 9: PIN 1. 2. 3. 4.	GATE COLLECTOR EMITTER COLLECTOR	STYLE 10: PIN 1. 2. 3. 4.	GATE	STYLE 11: PIN 1. 2. 3. 4.	DRAIN SOURCE	STYLE 12: PIN 1. 2. 3. 4.	MAIN TERMINAL 1 MAIN TERMINAL 2

DOCUMENT NUMBER:	98ASB42148B	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-220		PAGE 1 OF 1		


onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

D²PAK 3 CASE 418B-04 **ISSUE L**


DATE 17 FEB 2015

SCALE 1:1

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH. 3. 418B-01 THRU 418B-03 OBSOLETE,
- NEW STANDARD 418B-04.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.340	0.380	8.64	9.65
В	0.380	0.405	9.65	10.29
C	0.160	0.190	4.06	4.83
D	0.020	0.035	0.51	0.89
Е	0.045	0.055	1.14	1.40
F	0.310	0.350	7.87	8.89
G	0.100 BSC		2.54 BSC	
Н	0.080	0.110	2.03	2.79
J	0.018	0.025	0.46	0.64
K	0.090	0.110	2.29	2.79
L	0.052	0.072	1.32	1.83
M	0.280	0.320	7.11	8.13
N	0.197 REF		5.00	REF
Р	0.079 REF		2.00 REF	
R	0.039 REF		0.99	REF
S	0.575	0.625	14.60	15.88
^	0.045	0.055	1.14	1.40

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR

STYLE 2: PIN 1. GATE 2. DRAIN

3. SOURCE 4. DRAIN

STYLE 3: PIN 1. ANODE 2. CATHODE

3. ANODE 4. CATHODE

STYLE 4: PIN 1. GATE 2. COLLECTOR

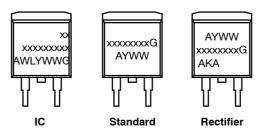
3. EMITTER 4. COLLECTOR

STYLE 5:

PIN 1. CATHODE 2. ANODE 3. CATHODE 4. ANODE

STYLE 6:

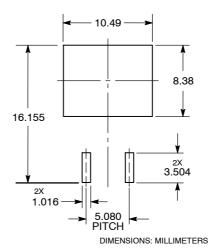
PIN 1. NO CONNECT 2. CATHODE 3. ANODE 4. CATHODE


MARKING INFORMATION AND FOOTPRINT ON PAGE 2

DOCUMENT NUMBER:	98ASB42761B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	D ² PAK 3		PAGE 1 OF 2	

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

DATE 17 FEB 2015


GENERIC MARKING DIAGRAM*

xx = Specific Device Code
A = Assembly Location
WL = Wafer Lot

Y = Year
WW = Work Week
G = Pb-Free Package
AKA = Polarity Indicator

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98ASB42761B	Electronic versions are uncontrolled except when accessed directly from the Document Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	D ² PAK 3		PAGE 2 OF 2	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

^{*}This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot " ■", may or may not be present.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative