Power MOSFET

–20 V, –1.8 A, μCool[™] Dual P–Channel, ESD, 1.6x1.6x0.55 mm UDFN Package

Features

- UDFN Package with Exposed Drain Pads for Excellent Thermal Conduction
- Low Profile UDFN 1.6 x 1.6 x 0.55 mm for Board Space Saving
- ESD
- This is a Halide Free Device
- This is a Pb–Free Device

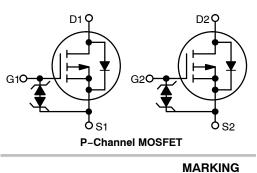
Applications

- High Side Load Switch
- PA Switch
- Battery Switch
- Optimized for Power Management Applications for Portable Products, such as Cell Phones, PMP, DSC, GPS, and others

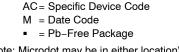
MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Parameter			Symbol	Value	Units
Drain-to-Source Voltage			V _{DSS}	-20	V
Gate-to-Source Voltage			V _{GS}	±8.0	V
Continuous Drain	Steady State	T _A = 25°C	I _D	-1.4	А
Current (Note 1)		T _A = 85°C	1	-1.0	
	t ≤ 5 s	T _A = 25°C	1	-1.8	
Power Dissipation (Note 1)	Steady State	T _A = 25°C	P _D	0.8	W
	t ≤ 5 s	T _A = 25°C	1	1.3	
Continuous Drain	Steady State	T _A = 25°C	Ι _D	-1.1	А
Current (Note 2)	Siale	$T_A = 85^{\circ}C$		-0.8	
Power Dissipation (Note 2) $T_A = 25^{\circ}C$			PD	0.5	W
Pulsed Drain Current tp = 10 μs			I _{DM}	-8.0	А
Operating Junction and Storage Temperature			T _J , T _{STG}	-55 to 150	°C
Source Current (Body Diode) (Note 2)			۱ _S	-1.0	А
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C
Gate-to-Source ESD Rating (HBM) per JESD22–A114F			ESD	1000	V

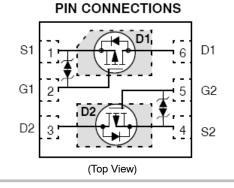
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


- Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
- Surface-mounted on FR4 board using the minimum recommended pad size of 30 mm², 2 oz. Cu.

ON Semiconductor®


http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
	250 mΩ @ –4.5 V	–1.5 A
-20 V	380 mΩ @ −2.5 V	–1.0 A
	500 mΩ @ –1.8 V	–0.5 A
	700 mΩ @ −1.5 V	–0.2 A



DIAGRAM

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

THERMAL RESISTANCE RATINGS

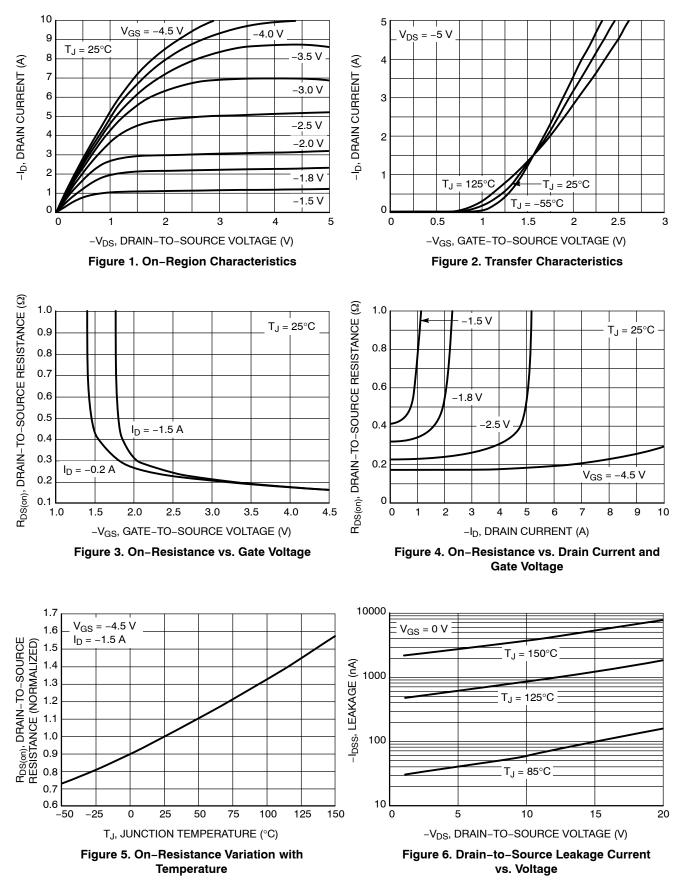
Parameter		Max	Units
Junction-to-Ambient – Steady State (Note 3)		155	°C/W
Junction-to-Ambient – t \leq 5 s (Note 3)		100	
Junction-to-Ambient – Steady State min Pad (Note 4)		245	

ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise specified)

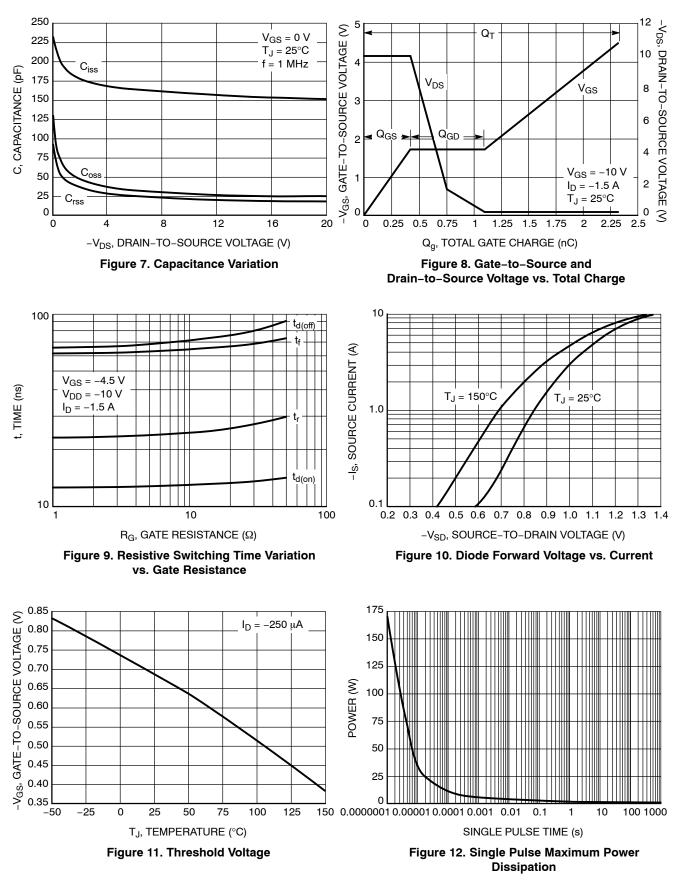
Parameter	Symbol	Test Condition		Min	Тур	Max	Units
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = -250 μ A		-20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I_D = –250 $\mu A,$ ref to 25°C			15		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V$, $T_J = 25^{\circ}C$				-1.0	μA
		$V_{\rm DS} = -20$ V	$T_J = 85^{\circ}C$			-10	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, \text{V}_{GS} = \pm 8.0 \text{ V}$				10	μΑ
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, I _D = 250 μA	-0.4		-1.0	V
Negative Threshold Temp. Coefficient	V _{GS(TH)} /T _J				2.5		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -1.5 \text{ A}$			175	250	mΩ
		V _{GS} = -2.5	V, I _D = -1.0 A		240	380	
		$V_{GS} = -1.8 \text{ V}, I_D = -0.5 \text{ A}$			330	500	
		V _{GS} = -1.5	V, I _D = -0.2 A		410	700	
Forward Transconductance	9 FS	$V_{DS} = -5.0 \text{ V}, I_D = -0.2 \text{ A}$			1.4		S
CHARGES, CAPACITANCES & GATE F	ESISTANCE			-	-	-	-
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = -10 V			160		pF
Output Capacitance	C _{OSS}				32		
Reverse Transfer Capacitance	C _{RSS}				23		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = -4.5 V, V _{DS} = -10 V; ID = -1.5 A			2.3	3.5	nC
Threshold Gate Charge	Q _{G(TH)}				0.2		-
Gate-to-Source Charge	Q _{GS}				0.4		
Gate-to-Drain Charge	Q _{GD}				0.7		
SWITCHING CHARACTERISTICS, VGS	= 4.5 V (Note 6)						
Turn-On Delay Time	t _{d(ON)}	V_{GS} = -4.5 V, V_{DD} = -10 V, I _D = -1.5 A, R _G = 1 Ω			13		ns
Rise Time	t _r				24		
Turn-Off Delay Time	t _{d(OFF)}				68		
Fall Time	t _f				62		
DRAIN-SOURCE DIODE CHARACTERI	STICS						
Forward Diode Voltage	VSD	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.85	1.2	V
		$I_{\rm S} = -1.0 \rm{A}$	T _J = 85°C	1	0.75		
Reverse Recovery Time	t _{RR}		1	1	10		ns
Charge Time	t _a	V _{GS} = 0 V, dISD/dt = 100 A/μs, I _S = −1.0 A			8.0		
Discharge Time	t _b				2.0		

3. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces). 4. Surface-mounted on FR4 board using the minimum recommended pad size of 30 mm², 2 oz. Cu. 5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.

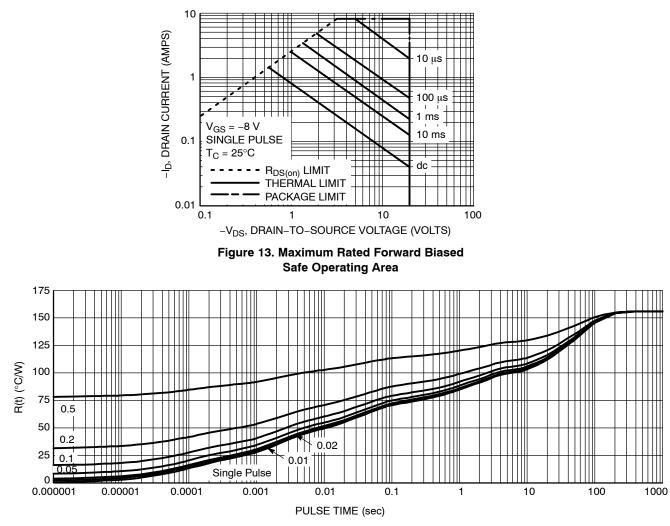
 $\mathsf{Q}_{\mathsf{R}\mathsf{R}}$


6. Switching characteristics are independent of operating junction temperatures.

5.0

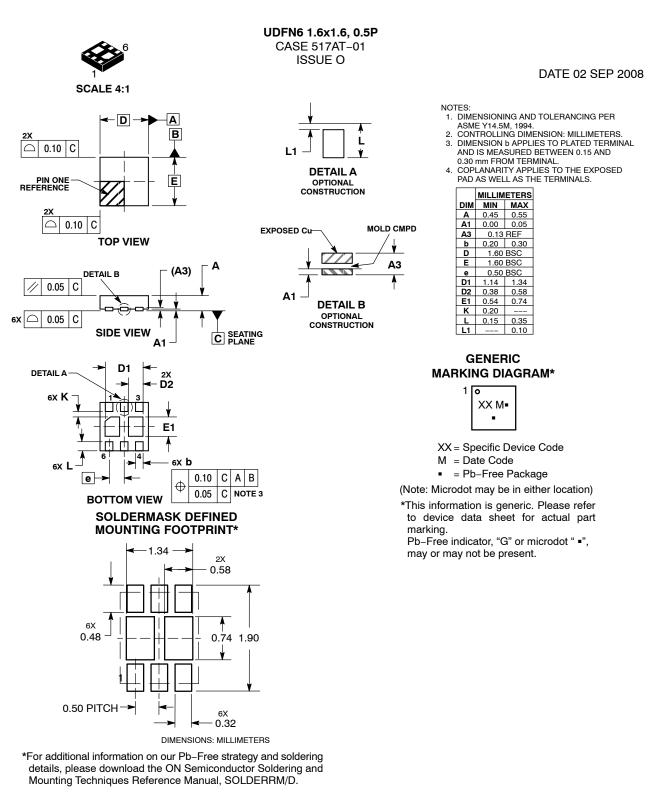

nC

Reverse Recovery Charge


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS


DEVICE ORDERING INFORMATION

Device	Package	${\sf Shipping}^{\dagger}$
NTLUD3191PZTAG	UDFN6 (Pb-Free)	3000 / Tape & Reel
NTLUD3191PZTBG	UDFN6 (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

μCool is a trademark of Semiconductor Components Industries, LLC (SCILLC).

 DOCUMENT NUMBER:
 98AON32372E
 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

 DESCRIPTION:
 6 PIN UDFN, 1.6X1.6, 0.5P
 PAGE 1 OF 1

 ON Semiconductor and @@ are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥