40 V, 8.0 A, Low V_{CE(sat)} **NPN Transistor**

ON Semiconductor's e²PowerEdge family of low V_{CE(sat)} transistors are miniature surface mount devices featuring ultra low saturation voltage (V_{CE(sat)}) and high current gain capability. These are designed for use in low voltage, high speed switching applications where affordable efficient energy control is important.

Typical applications are DC-DC converters and power management in portable and battery powered products such as cellular and cordless phones, PDAs, computers, printers, digital cameras and MP3 players. Other applications are low voltage motor controls in mass storage products such as disc drives and tape drives. In the automotive industry they can be used in air bag deployment and in the instrument cluster. The high current gain allows e²PowerEdge devices to be driven directly from PMU's control outputs, and the Linear Gain (Beta) makes them ideal components in analog amplifiers.

• This is a Pb-Free Device

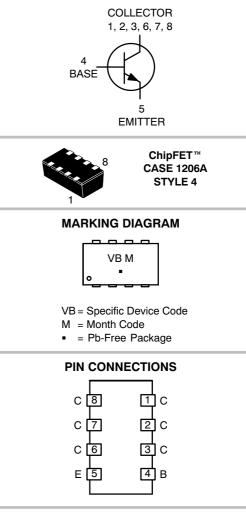
MAXIMUM RATINGS (T_A = 25°C)

Rating	Symbol	Max	Unit
Collector-Emitter Voltage	V _{CEO}	40	Vdc
Collector-Base Voltage	V _{CBO}	40	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	Vdc
Collector Current - Continuous	Ι _C	6.0	Adc
Collector Current - Peak	I _{CM}	8.0	A
Electrostatic Discharge	ESD	HBM Class 3B MM Class C	

Characteristic	Symbol	Мах	Unit
Total Device Dissipation, $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	P _D (Note 1)	830 6.7	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$ (Note 1)	150	°C/W
Total Device Dissipation, $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	P _D (Note 2)	1.4 11.1	W mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$ (Note 2)	90	°C/W
Thermal Resistance, Junction-to-Lead #1	$R_{\theta JL}$ (Note 2)	15	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

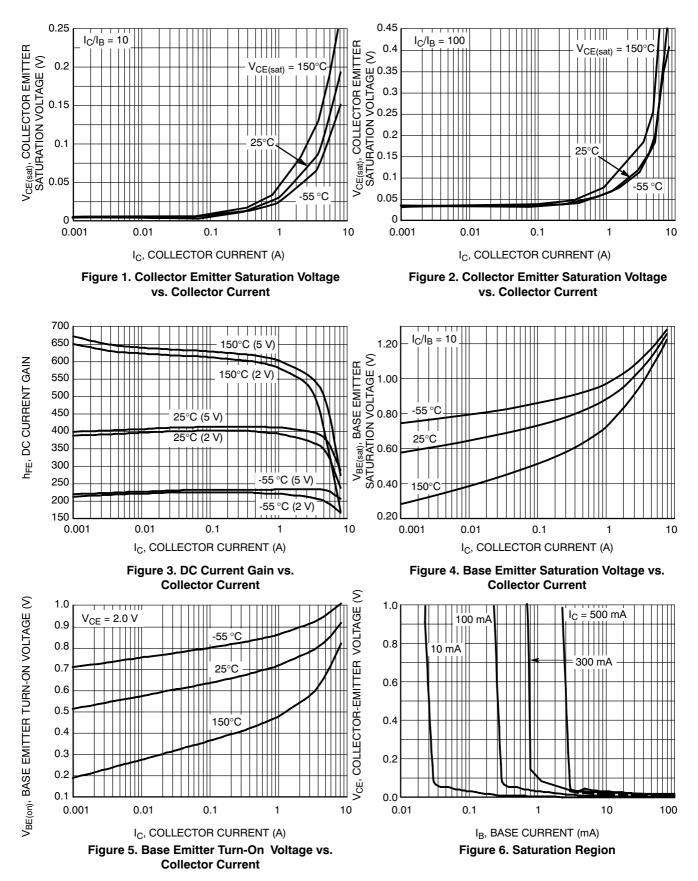

FR-4 @ 100 mm², 1 oz copper traces.
 FR-4 @ 500 mm², 1 oz copper traces.

ON Semiconductor®

http://onsemi.com

40 VOLTS, 8.0 AMPS NPN LOW $V_{CE(sat)}$ TRANSISTOR EQUIVALENT $R_{DS(on)}$ 31 m Ω

ORDERING INFORMATION


Device	Package	Shipping [†]
NSS40601CF8T1G	ChipFET (Pb-Free)	3000/ Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_A = 25° C unless otherwise noted)

Characteristic	Symbol	Min	Typical	Max	Unit
OFF CHARACTERISTICS				•	
Collector-Emitter Breakdown Voltage $(I_C = 10 \text{ mAdc}, I_B = 0)$	V _{(BR)CEO}	40	-	-	Vdc
Collector-Base Breakdown Voltage $(I_C = 0.1 \text{ mAdc}, I_E = 0)$	V _{(BR)CBO}	40	-	-	Vdc
Emitter-Base Breakdown Voltage $(I_E = 0.1 \text{ mAdc}, I_C = 0)$	V _{(BR)EBO}	6.0	-	-	Vdc
Collector Cutoff Current ($V_{CB} = 40 \text{ Vdc}, I_E = 0$)	I _{CBO}	-	-	0.1	μAdc
Emitter Cutoff Current (V _{EB} = 6.0 Vdc)	I _{EBO}	-	-	0.1	μAdc
ON CHARACTERISTICS					
$ \begin{array}{l} \text{DC Current Gain (Note 3)} \\ (I_{C} = 10 \text{ mA}, V_{CE} = 2.0 \text{ V}) \\ (I_{C} = 500 \text{ mA}, V_{CE} = 2.0 \text{ V}) \\ (I_{C} = 1.0 \text{ A}, V_{CE} = 2.0 \text{ V}) \\ (I_{C} = 2.0 \text{ A}, V_{CE} = 2.0 \text{ V}) \\ (I_{C} = 3.0 \text{ A}, V_{CE} = 2.0 \text{ V}) \end{array} $	h _{FE}	200 200 200 200 200	- - 395 - -	- - - - -	
	V _{CE(sat)}	- - - - -	0.008 0.031 0.060 0.075 0.100 0.090	0.010 0.075 0.075 0.110 0.150 0.135	V
Base-Emitter Saturation Voltage (Note 3) $(I_C = 1.0 \text{ A}, I_B = 0.01 \text{ A})$	V _{BE(sat)}	-	0.760	0.900	V
Base-Emitter Turn-on Voltage (Note 3) $(I_C = 2.0 \text{ A}, V_{CE} = 2.0 \text{ V})$	V _{BE(on)}	-	0.720	0.900	V
Cutoff Frequency (I _C = 100 mA, V _{CE} = 5.0 V, f = 100 MHz)	f _T	140	-	-	MHz
Input Capacitance (V _{EB} = 0.5 V, f = 1.0 MHz)	Cibo	-	-	1200	pF
Output Capacitance (V _{CB} = 3.0 V, f = 1.0 MHz)	Cobo	-	-	100	pF
SWITCHING CHARACTERISTICS					
Delay (V _{CC} = 30 V, I _C = 750 mA, I _{B1} = 15 mA)	t _d	-	-	110	ns
Rise (V _{CC} = 30 V, I_C = 750 mA, I_{B1} = 15 mA)	t _r	-	-	130	ns
Storage (V _{CC} = 30 V, I_C = 750 mA, I_{B1} = 15 mA)	t _s	-	-	1400	ns
Fall (V _{CC} = 30 V, I _C = 750 mA, I _{B1} = 15 mA)	t _f	-	-	130	ns

3. Pulsed Condition: Pulse Width = 300 $\mu sec,$ Duty Cycle \leq 2%.

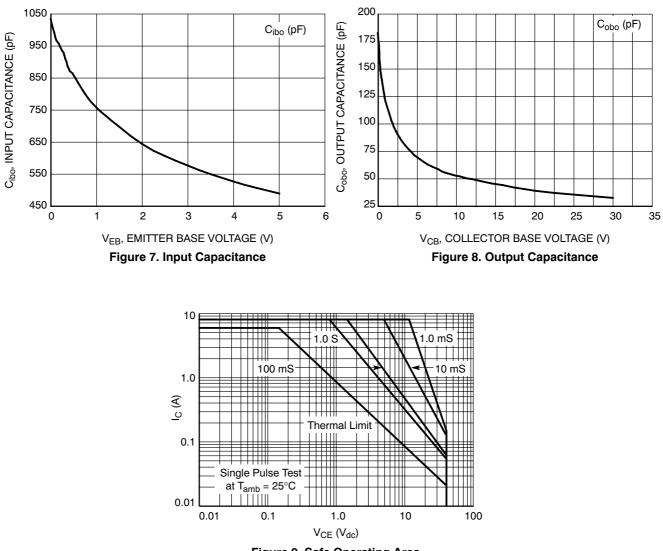


Figure 9. Safe Operating Area

ChipFET[™] CASE1206A-03 **ISSUE K**

COLLECTOR

COLLECTOR COLLECTOR

4. BASE 5. EMITTER

2.

3.

6.

7. 8.

DATE 19 MAY 2009

INCHES

NOM

0.041

0.012

0.006

0.120

0.065

0.025 BS0

0.022 BSC

0.014

NOM

0.075 0.079

MAX

0.043

0.014

0.008

0.122

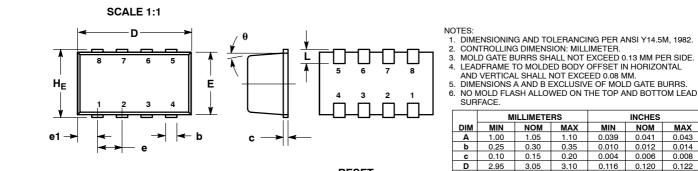
0.067

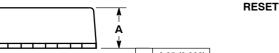
0.017

MIN

0.039

0.010


0.004


0.116

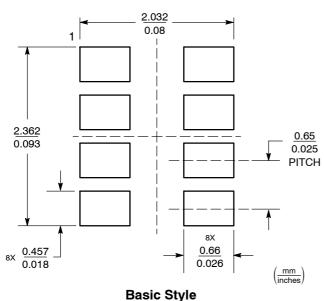
0.061

0.011

0.071

0.05 (0.002) STYLE 1: PIN 1. DRAIN 2. DRAIN STYLE 2: PIN 1 SOURCE 1 STYLE 3: STYLE 4: PIN 1. COLLECTOR PIN 1 DRAIN 2

З.


6. DRAIN

4. GATE 5. SOURCE

7. DRAIN 8. DRAIN

II. SOURCE I	PIN I. ANODE
2. GATE 1	2. ANODE
SOURCE 2	3. SOURCE
4. GATE 2	4. GATE
5. DRAIN 2	5. DRAIN
6. DRAIN 2	6. DRAIN
7. DRAIN 1	7. CATHODE
8. DRAIN 1	8. CATHODE

SOLDERING FOOTPRINT

Η_E θ 1.80 1.90 2.00 ' NON

MIN

2.95

1.55

0.28

Е

е

e1

T

MILLIMETERS

1.05

0.30

0.15

3.05

1.65

0.65 BS0

0.55 BSC

0.35

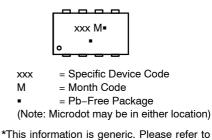
NOM MAX

1.10

0.35

0.20

3.10

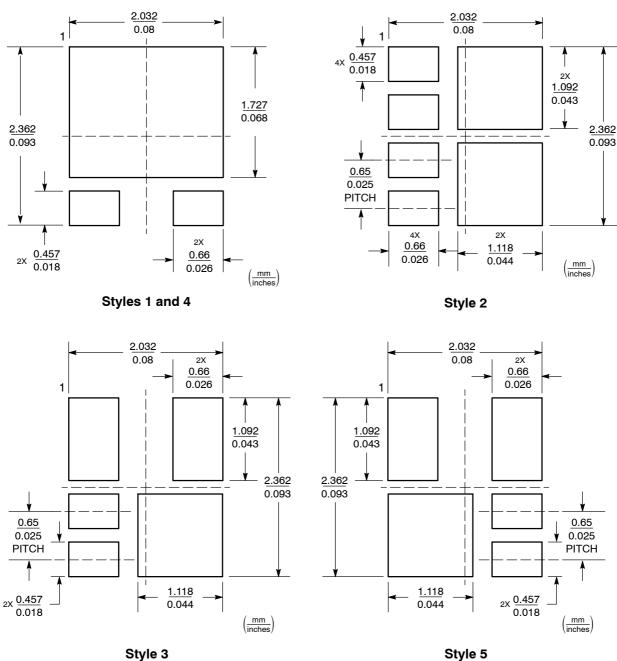

1.70

0.42

STYLE 5:	STYLE 6:
PIN 1. ANODE	PIN 1. ANODE
2. ANODE	2. DRAIN
3. DRAIN	3. DRAIN
4. DRAIN	4. GATE
5. SOURCE	5. SOURCE
6. GATE	6. DRAIN
CATHODE	7. DRAIN
 CATHODE 	8. CATHODE /

GENERIC **MARKING DIAGRAM***

DRAIN


device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " .", may or may not be present.

OPTIONAL SOLDERING FOOTPRINTS ON PAGE 2

DOCUMENT NUMBER:	98AON03078D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION: ChipFET PAGE 1 OF				
the suitability of its products for any pa	ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.			

ChipFET™ CASE 1206A-03 ISSUE K

DATE 19 MAY 2009

ADDITIONAL SOLDERING FOOTPRINTS*

Style 3

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON03078D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	CRIPTION: ChipFET P		PAGE 2 OF 2	
ON Semiconductor and I are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.				

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclorating, or solication of use products for any particular purpose, not occes of series assume any maturing ansing on series of the application of use of any product or circuit, and specifically disclorations any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others, onsemi products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death Associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥