<u>MOSFET</u> – Power, Single, N-Channel, DPAK/IPAK

30 V, 41 A

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- Three Package Variations for Design Flexibility
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

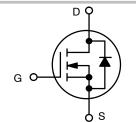
- CPU Power Delivery
- DC-DC Converters

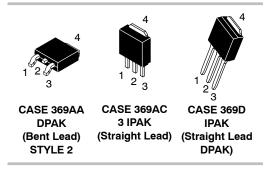
MAXIMUM RATINGS (T_J = $25^{\circ}C$ unless otherwise stated)

Pa	rameter	Symbol	Value	Unit	
Drain-to-Source Vo	ltage		V _{DSS}	30	V
Gate-to-Source Vo	Gate-to-Source Voltage			±20	V
Continuous Drain Current $R_{\theta JA}$		$T_A = 25^{\circ}C$	V _{GS} I _D	12.7 9.0	A
(Note 1)		T _A = 100°C			
Power Dissipation $R_{\theta JA}$ (Note 1)		$T_A = 25^{\circ}C$	PD	2.56	W
Continuous Drain		T _A = 25°C	۱ _D	9.4	А
Current R _{θJA} (Note 2)	Steady State	T _A = 100°C		6.6	
Power Dissipation $R_{\theta JA}$ (Note 2)	State	T _A = 25°C	PD	1.38	W
Continuous Drain		$T_{C} = 25^{\circ}C$	I _D	41	А
Current R _{θJC} (Note 1)		T _C = 100°C		29	
Power Dissipation $R_{\theta JC}$ (Note 1)		T _C = 25°C	PD	26.3	W
Pulsed Drain Current	t _p =10μs	T _A = 25°C	I _{DM}	150	A
Current Limited by F	Package	T _A = 25°C	I _{DmaxPkg}	40	А
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to +175	°C
Source Current (Body Diode)			ا _S	24	А
Drain to Source dV/dt			dV/dt	6.0	V/ns
Single Pulse Drain– Energy ($T_J = 25^{\circ}C$, $I_L = 19 A_{pk}$, $L = 0.1 r$	EAS	18	mJ		
Lead Temperature for (1/8" from case for 1		g Purposes	ΤL	260	°C

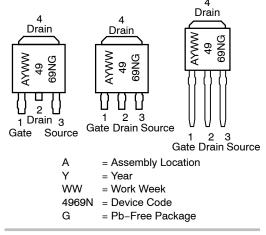
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.


2. Surface-mounted on FR4 board using the minimum recommended pad size.


ON Semiconductor®

http://onsemi.com


V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
30 V	9.0 mΩ @ 10 V	41 A
30 V	19 mΩ @ 4.5 V	41 A

N-CHANNEL MOSFET

MARKING DIAGRAMS & PIN ASSIGNMENTS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{\theta JC}$	5.7	°C/W
Junction-to-TAB (Drain)	$R_{\thetaJC-TAB}$	4.3	
Junction-to-Ambient - Steady State (Note 3)	$R_{\theta JA}$	58.6	
Junction-to-Ambient - Steady State (Note 4)	$R_{ hetaJA}$	108.6	

Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
Surface-mounted on FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D	= 250 μA	30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J				17		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V,$	$T_J = 25^{\circ}C$			1.0	
		V _{DS} = 24 V	T _J = 125°C			10	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS} = ±20 V				±100	nA
ON CHARACTERISTICS (Note 5)							-
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 250 \ \mu A$		1.5	1.8	2.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				4.5		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 30 A		6.9	9.0	
			I _D = 15 A		6.9		
		V _{GS} = 4.5 V	I _D = 30 A		13.6	19	mΩ
			l _D = 15 A		13.2		
Forward Transconductance	9 _{FS}	V _{DS} = 1.5 V, I _D = 30 A			36		S
CHARGES, CAPACITANCES AND GATE	RESISTANCE						
Input Capacitance	C _{ISS}				837		
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1.0 M	IHz, V _{DS} = 15 V		347		pF
Reverse Transfer Capacitance	C _{RSS}				180		1

Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 15 V	347	рF
Reverse Transfer Capacitance	C _{RSS}		180	
Total Gate Charge	Q _{G(TOT)}		9.0	
Threshold Gate Charge	Q _{G(TH)}		1.42	
Gate-to-Source Charge	Q _{GS}	V _{GS} = 4.5 V, V _{DS} = 15 V, I _D = 30 A	2.8	nC
Gate-to-Drain Charge	Q _{GD}		4.8	
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 10 V, V_{DS} = 15 V, I_{D} = 30 A	16.5	nC

SWITCHING CHARACTERISTICS (Note 6)

Turn-On Delay Time	t _{d(ON)}		10	
Rise Time	t _r	V _{GS} = 4.5 V, V _{DS} = 15 V,	27	
Turn-Off Delay Time	t _{d(OFF)}	I_D = 15 A, R_G = 3.0 Ω	13.3	ns
Fall Time	t _f		6.4	

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
Switching characteristics are independent of operating junction temperatures.
Assume terminal length of 110 mils.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS (Note 6)							
Turn–On Delay Time	t _{d(ON)}				6.5		
Rise Time	t _r	V _{GS} = 10 V, V _{DS} = 15 V,			20.2		
Turn-Off Delay Time	t _{d(OFF)}	I _D = 15 A, R _G =	3.0 Ω		17.2		ns
Fall Time	t _f				4.2		
DRAIN-SOURCE DIODE CHARACTERIST	rics						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 30 A	$T_J = 25^{\circ}C$		0.91	1.1	V
	$I_{\rm S} = 30 {\rm A}$ $T_{\rm J} = 125$	T _J = 125°C		0.82		V	
Reverse Recovery Time	t _{RR}		•		20.8		
Charge Time	t _a	V_{GS} = 0 V, dIS/dt = 100 A/µs, I_{S} = 30 A			9.8		ns
Discharge Time	t _b				11		
Reverse Recovery Charge	Q _{RR}				8.0		nC
PACKAGE PARASITIC VALUES							
Source Inductance (Note 7)	L _S				2.85		nH
Drain Inductance, DPAK	LD	1			0.0164		
Drain Inductance, IPAK (Note 7)	LD	T _A = 25°0	C		1.88		
Gate Inductance (Note 7)	L _G	1			4.9		

5. Pulse Test: pulse width \leq 300 µs, duty cycle \leq 2%.

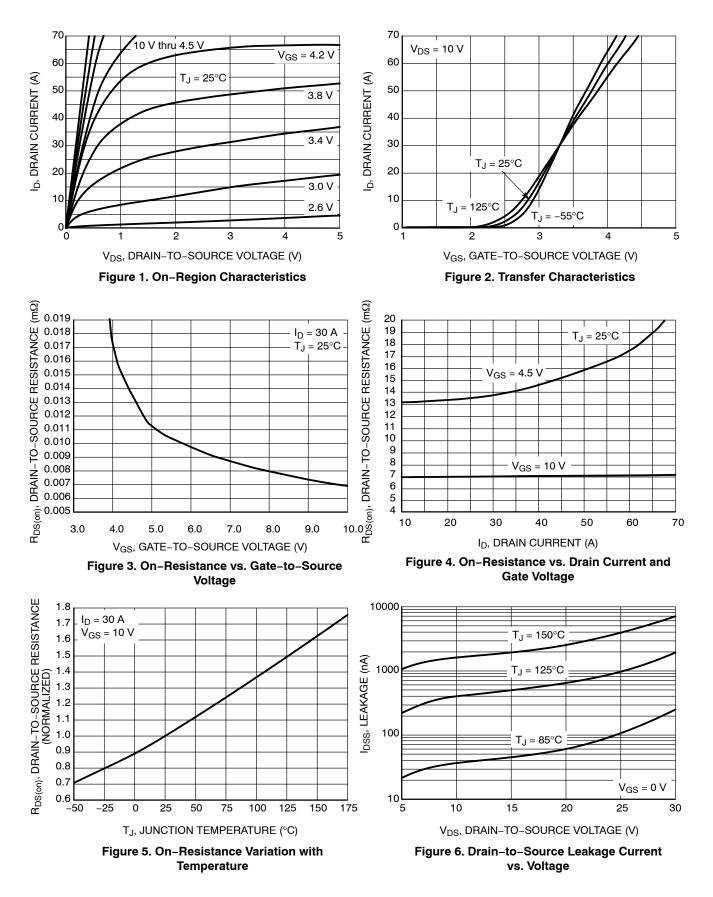
Switching characteristics are independent of operating junction temperatures.
Assume terminal length of 110 mils.

 R_G

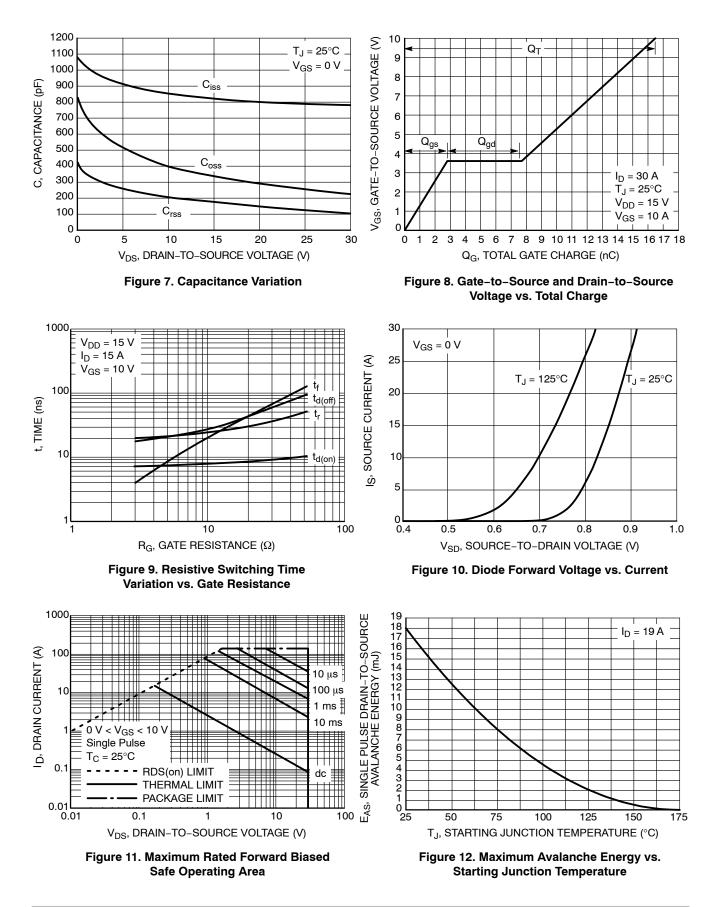
ORDERING INFORMATION

Gate Resistance

Device	Package	Shipping [†]
NTD4969NT4G	DPAK 2500 / Tape 8 (Pb-Free)	
NTD4969N-1G	IPAK (Pb-Free)	75 Units / Rail
NTD4969N-35G	IPAK Trimmed Lead (Pb-Free)	75 Units / Rail


1.0

2.2


Ω

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES

DATE 15 DEC 2010

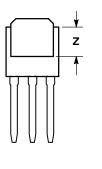
IPAK CASE 369D-01 **ISSUE C** С в -SCALE 1:1 v Ε R 7 4 Α S 2 3 1 -T-7 SEATING PLANE κ J F ·H D 3 PL G 🖛 🔶 0.13 (0.005) 🔘 T STYLE 2: PIN 1. GATE STYLE 3: PIN 1. ANODE STYLE 1: PIN 1. BASE STYLE 4: PIN 1. CATHODE

DRAIN
SOURCE

4. DRAIN

STYLE 6: PIN 1. MT1 2. MT2 3. GATE

4. MT2 2. CATHODE


4. CATHODE

COLLECTOR

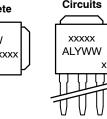
3. ANODE

STYLE 7: PIN 1. GATE 2. COLLECTOR 3. EMITTER

4.

ANODE
GATE

4. ANODE


NOTES:

	INC	HES	MILLIN	METERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.235	0.245	5.97	6.35	
В	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
Е	0.018	0.023	0.46	0.58	
F	0.037	0.045	0.94	1.14	
G	0.090	BSC	2.29 BSC		
Н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
к	0.350	0.380	8.89	9.65	
R	0.180	0.215	4.45	5.45	
S	0.025	0.040	0.63	1.01	
V	0.035	0.050	0.89	1.27	
Ζ	0.155		3.93		

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

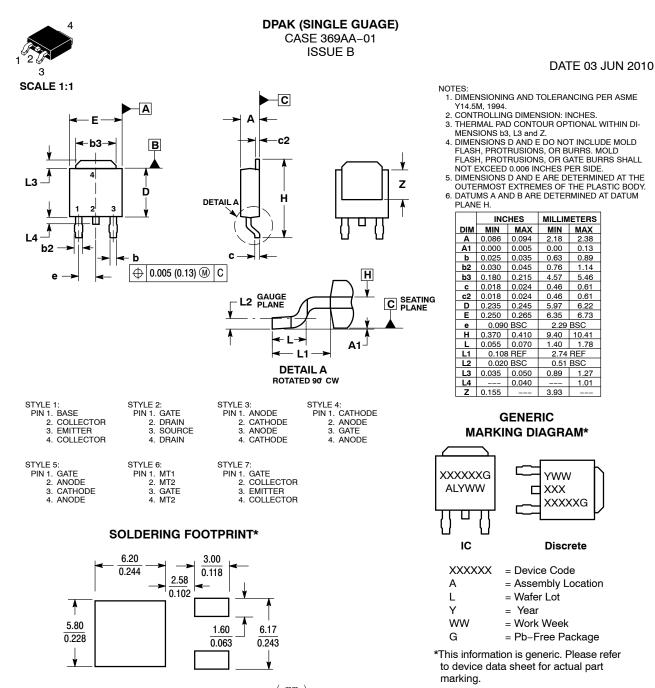
MARKING DIAGRAMS

Integrated Circuits Discrete YWW XXXXXXXX

xxxxxxxx = Device Code А = Assembly Location IL = Wafer Lot Y = Year WW = Work Week

DOCUMENT NUMBER:	98AON10528D	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.						
DESCRIPTION:	DESCRIPTION: IPAK (DPAK INSERTION MOUNT)							
the suitability of its products for any pa	articular purpose, nor does ON Semiconducto	ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the						

2. COLLECTOR


4. COLLECTOR

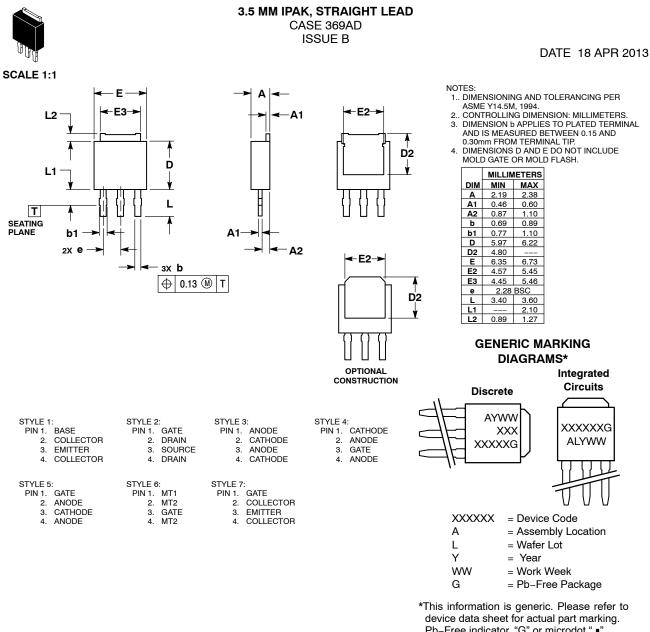
3. EMITTER

STYLE 5: PIN 1. GATE 2. ANODE 3. CATHODE

4. ANODE

mm SCALE 3:1 inches

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


Electronic versions are uncontrolled except when accessed directly from the Document Repository. DOCUMENT NUMBER: 98AON13126D Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** DPAK (SINGLE GAUGE) PAGE 1 OF 1 ON Semiconductor and unarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

© Semiconductor Components Industries, LLC, 2019

rights of others

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

Pb–Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98AON23319D Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION: 3.5 MM IPAK, STRAIGHT LEAD PAGE 1 C					
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or cidental damages. ON Semiconductor does not convey any license under	or guarantee regarding circuit, and specifically		

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥