

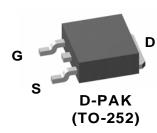
Is Now Part of

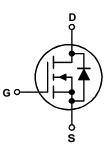
ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

- Max $r_{DS(on)}$ = 6.0 m Ω at V_{GS} = 4.5 V, I_D = 21 A
- 100% UIL test
- RoHS Compliant




General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{DS(on)}$ and fast switching speed.

Applications

- Vcore DC-DC for Desktop Computers and Servers
- VRM for Intermediate Bus Architecture

MOSFET Maximum Ratings T_C = 25 °C unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			25	V	
V _{GS}	Gate to Source Voltage			±20	V	
	Drain Current -Continuous (Package limited)	T _C = 25 °C		50	A	
	-Continuous (Silicon limited)	T _C = 25 °C		131		
I _D	-Continuous	T _A = 25 °C	(Note 1a)	27		
	-Pulsed			200		
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	72	mJ	
	Power Dissipation	T _C = 25 °C		65	14/	
P _D	Power Dissipation	T _A = 25 °C	(Note 1a)	3.7	W	
T _J , T _{STG}	Operating and Storage Junction Temperature R	ange		-55 to +175	°C	

Thermal Characteristics

R_{\thetaJC}	Thermal Resistance, Junction to Case		2.3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	40	C/W

Package Marking and Ordering Information

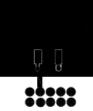
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDD6760A	FDD6760A	D-PAK (TO-252)	13 "	16 mm	2500 units

Downloaded from Arrow.com.

March 2015

	FDD6760A N-Channel Power Trench [®] MOSFET
	∍nch [®]
	NOSI
_	FET

Units


BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0 V	25			V
ΔBV _{DSS} ΔT,	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C		16		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 20 V, V _{GS} = 0 V			1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
	acteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250 μA	1.0	1.6	3.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C		-7		mV/°C
		V _{GS} = 10 V, I _D = 27 A		2.3	3.2	
r _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 21 \text{ A}$		4.4	6.0	mΩ
		V _{GS} = 10 V, I _D = 27 A, T _J = 150 °C		3.5	4.9	
9 _{FS}	Forward Transconductance	V _{DS} = 5 V, I _D = 27 A		186		S
Dvnamio	c Characteristics					
C _{iss}	Input Capacitance			2380	3170	pF
C _{oss}	Output Capacitance	$V_{DS} = 13 V, V_{GS} = 0 V,$		525	700	pF
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		470	710	pF
R _q	Gate Resistance	f = 1MHz		1.3		Ω
*						
	ng Characteristics			10	20	ns
t _{d(on)}	Turn-On Delay Time	Vpp = 13 V. lp = 27 A.		10 9	20 18	ns
t _{d(on)} t _r	Turn-On Delay Time Rise Time	$V_{DD} = 13$ V, I _D = 27 A, V _{GS} = 10 V, R _{GEN} = 6 Ω		-	-	-
t _{d(on)} t _r t _{d(off)}	Turn-On Delay Time			9	-	ns
t _{d(on)} t _r t _{d(off)} t _f	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	V_{GS} = 10 V, R_{GEN} = 6 Ω		9 28	-	ns ns
t _{d(on)} t _r t _{d(off)} t _f Q _g	Turn-On Delay Time Rise Time Turn-Off Delay Time	V_{GS} = 10 V, R_{GEN} = 6 Ω		9 28 6	18	ns ns ns
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _g	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge			9 28 6 44	18 62	ns ns ns nC
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _g Q _{gs}	Turn-On Delay TimeRise TimeTurn-Off Delay TimeFall TimeTotal Gate ChargeTotal Gate Charge	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 5 \text{ V}$ $V_{DD} = 13 \text{ V},$		9 28 6 44 25	18 62	ns ns nS nC nC
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gs} Q _{gd}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 5 \text{ V}$ $V_{DD} = 13 \text{ V},$		9 28 6 44 25 6	18 62	ns ns nC nC nC
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd} Drain-Sc	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge Durce Diode Characteristics	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 5 \text{ V}$ $V_{DD} = 13 \text{ V},$ $I_{D} = 17 \text{ A}$		9 28 6 44 25 6	18 62	ns ns nC nC nC nC
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd} Drain-Sc	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 5 \text{ V}$ $V_{DD} = 13 \text{ V},$ $I_D = 17 \text{ A}$ $V_{GS} = 0 \text{ V}, \text{ I}_S = 3.1 \text{ A}$ (Note 2)		9 28 6 44 25 6 9.9	18 62 35	ns ns nC nC nC
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd} Drain-Sc V _{SD}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge Durce Diode Characteristics	$\begin{array}{c} V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \ \Omega \\ \\ \hline \\ V_{GS} = 0 \text{ V to } 10 \text{ V} \\ \hline \\ V_{GS} = 0 \text{ V to } 5 \text{ V} \\ \hline \\ I_D = 17 \text{ A} \\ \end{array}$		9 28 6 44 25 6 9.9	18 62 35 1.2	ns ns nC nC nC nC
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gg}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge Durce Diode Characteristics Source to Drain Diode Forward Voltage	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 5 \text{ V}$ $V_{DD} = 13 \text{ V},$ $I_D = 17 \text{ A}$ $V_{GS} = 0 \text{ V}, \text{ I}_S = 3.1 \text{ A}$ (Note 2)		9 28 6 44 25 6 9.9 0.7 0.8	18 62 35 1.2 1.3	ns ns nC nC nC nC

Test Conditions

Min

Тур

Max

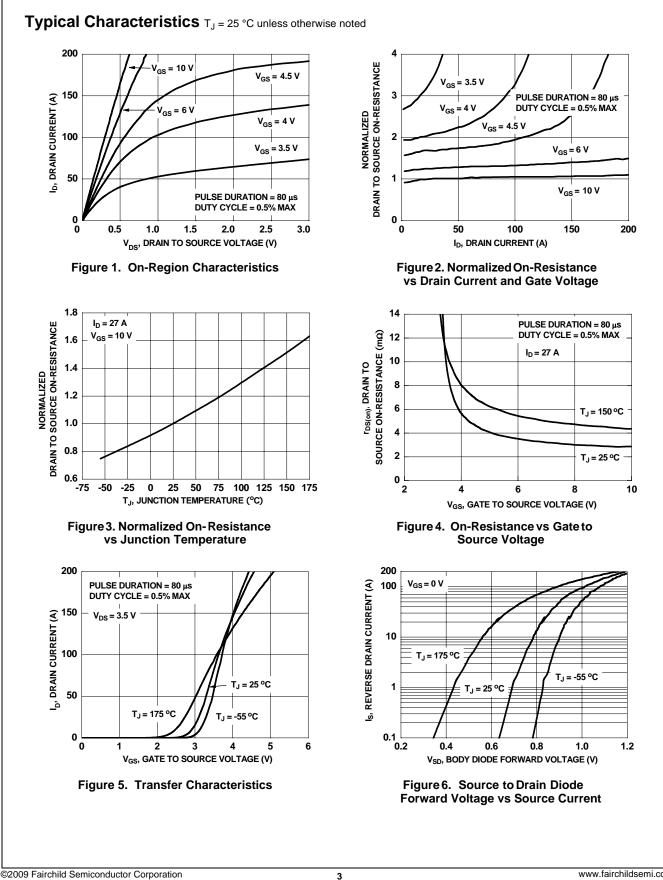
Electrical Characteristics $T_J = 25$ °C unless otherwise noted

Parameter

Symbol

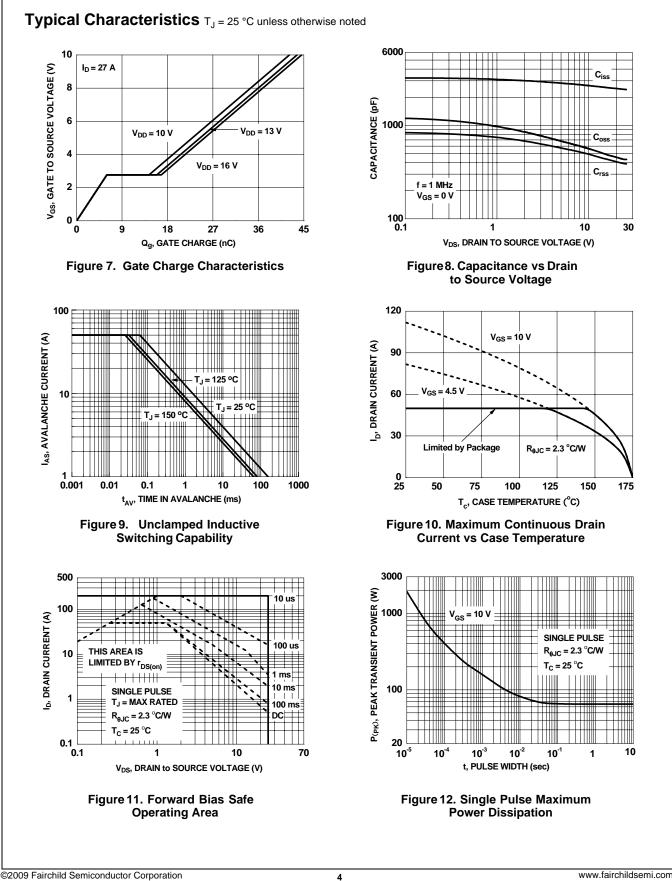
a) 40 °C/W when mounted on a 1 in² pad of 2 oz copper

2

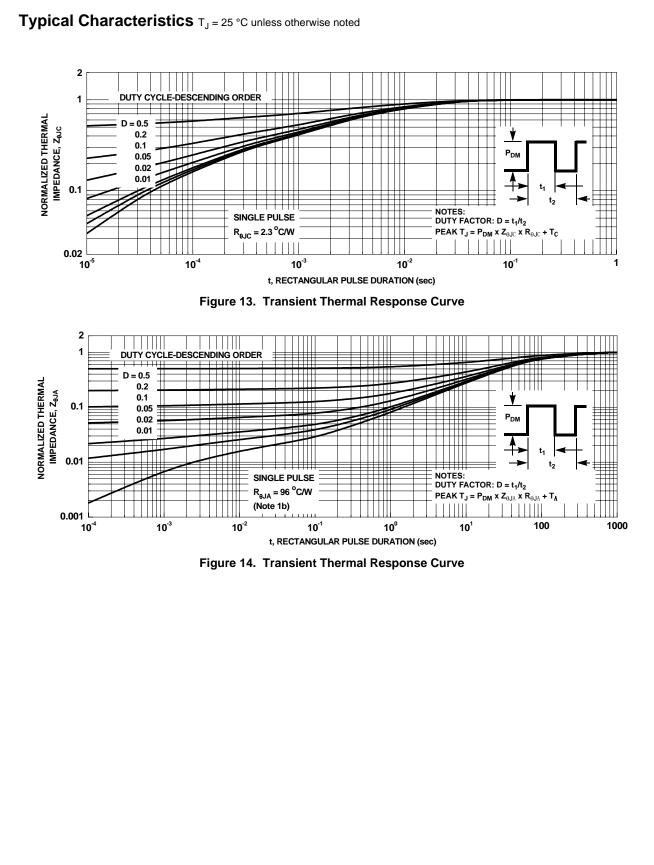

b) 96 °C/W when mounted on a minimum pad.

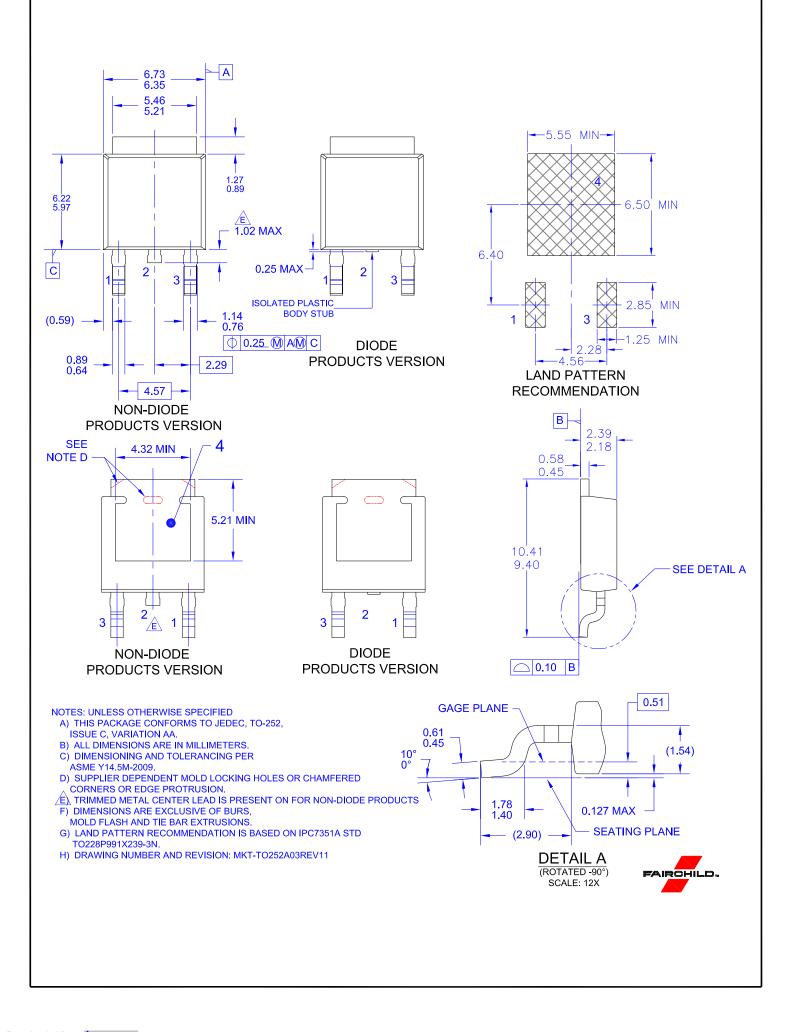
www.fairchildsemi.com

Downloaded from Arrow.com.


2: Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%. **3:** E_{AS} of 72 mJ is based on starting T_J = 25 °C, L = 1 mH, I_{AS} = 12 A, V_{DD} = 23 V, V_{GS} = 10 V. 100% test at L = 0.1 mH, I_{AS} = 29 A. ©2009 Fairchild Semiconductor Corporation FDD6760A Rev. 1.2

FDD6760A N-Channel Power Trench[®] MOSFET


FDD6760A Rev. 1.2


www.fairchildsemi.com

FDD6760A Rev. 1.2

FDD6760A N-Channel Power Trench[®] MOSFET

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.