Power MOSFET 4.4 Amps, 20 Volts

P-Channel TSOP-6

Features

- Ultra Low R_{DS(on)}
- Higher Efficiency Extending Battery Life
- Miniature TSOP-6 Surface Mount Package
- These Devices are Pb-Free and are RoHS Compliant
- NVGS Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable

Applications

• Power Management in Portable and Battery-Powered Products, i.e.: Cellular and Cordless Telephones, and PCMCIA Cards

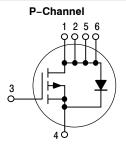
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V_{DSS}	-20	Volts
Gate-to-Source Voltage - Continuous	V_{GS}	±12	Volts
Thermal Resistance Junction–to–Ambient (Note 1) Total Power Dissipation @ $T_A = 25^{\circ}C$ Drain Current – Continuous @ $T_A = 25^{\circ}C$ – Pulsed Drain Current ($T_p < 10 \ \mu S$)	R _{θJA} P _d I _D I _{DM}	244 0.5 -2.2 -10	°C/W Watts Amps Amps
Thermal Resistance Junction-to-Ambient (Note 2) Total Power Dissipation @ T _A = 25°C Drain Current - Continuous @ T _A = 25°C - Pulsed Drain Current (T _p < 10 µS)	R _{0JA} P _d I _D I _{DM}	128 1.0 -3.1 -14	°C/W Watts Amps Amps
Thermal Resistance Junction-to-Ambient (Note 3) Total Power Dissipation @ T _A = 25°C Drain Current – Continuous @ T _A = 25°C – Pulsed Drain Current (T _p < 10 μS)	R _{θJA} P _d I _D	62.5 2.0 -4.4 -20	°C/W Watts Amps Amps
Operating and Storage Temperature Range	T _J , T _{stg}	–55 to 150	°C
Maximum Lead Temperature for Soldering Purposes for 10 Seconds	TL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Minimum FR-4 or G-10 PCB, operating to steady state.

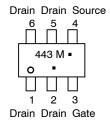
- 2. Mounted onto a 2 in square FR-4 board (1 in sq, 2 oz. Cu. 0.06" thick single sided), operating to steady state.
- 3. Mounted onto a 2 in square FR-4 board (1 in sq, 2 oz. Cu. 0.06" thick single sided), t < 5.0 seconds.



ON Semiconductor®

http://onsemi.com

4.4 AMPERES 20 VOLTS


 $R_{DS(on)} = 65 \text{ m}\Omega$

MARKING DIAGRAM & PIN ASSIGNMENT

TSOP-6 **CASE 318G** STYLE 1

= Specific Device Code 443

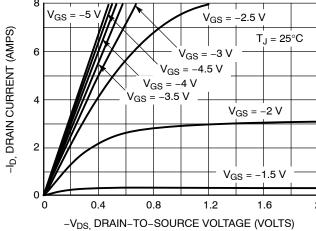
M = Date Code* = Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
NTGS3443T1G	TSOP-6 (Pb-Free)	3000 / Tape & Reel
NVGS3443T1G	TSOP-6 (Pb-Free)	3000 / Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted) (Notes 4 & 5)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain–Source Breakdown Voltage $(V_{GS} = 0 \text{ Vdc}, I_D = -10 \mu\text{A})$		V _{(BR)DSS}	-20	-	-	Vdc
Zero Gate Voltage Drain Current $(V_{GS} = 0 \text{ Vdc}, V_{DS} = -20 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, V_{DS} = -20 \text{ Vdc},$	T _J = 25°C) T _J = 70°C)	I _{DSS}	- -	- -	-1.0 -5.0	μAdc
Gate-Body Leakage Current (V _{GS} = -12 Vdc, V _{DS} = 0 Vdc)		I _{GSS}	-	_	-100	nAdc
Gate-Body Leakage Current (V _{GS} = +12 Vdc, V _{DS} = 0 Vdc)		I _{GSS}	_	-	100	nAdc
ON CHARACTERISTICS		•				
Gate Threshold Voltage ($V_{DS} = V_{GS}$, $I_D = -250 \mu Adc$)		V _{GS(th)}	-0.60	-0.95	-1.50	Vdc
Static Drain–Source On–State Resistance $(V_{GS} = -4.5 \text{ Vdc}, I_D = -4.4 \text{ Adc})$ $(V_{GS} = -2.7 \text{ Vdc}, I_D = -3.7 \text{ Adc})$ $(V_{GS} = -2.5 \text{ Vdc}, I_D = -3.5 \text{ Adc})$		R _{DS(on)}	- - -	0.058 0.082 0.092	0.065 0.090 0.100	Ω
Forward Transconductance (V _{DS} = -10 Vdc, I _D = -4.4 Adc)		9FS	_	8.8	-	mhos
DYNAMIC CHARACTERISTICS						
Input Capacitance		C _{iss}	-	565	_	pF
Output Capacitance	$(V_{DS} = -5.0 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, f = 1.0 \text{ MHz})$	C _{oss}	-	320	-	pF
Reverse Transfer Capacitance		C _{rss}	-	120	-	pF
SWITCHING CHARACTERISTICS	S					
Turn-On Delay Time		t _{d(on)}	-	10	25	ns
Rise Time	(V _{DD} = -20 Vdc, I _D = -1.0 Adc,	t _r	-	18	45	ns
Turn-Off Delay Time	$V_{GS} = -4.5 \text{ Vdc}, R_g = 6.0 \Omega$	t _{d(off)}	-	30	50	ns
Fall Time		t _f	-	31	50	ns
Total Gate Charge		Q _{tot}	-	7.5	15	nC
Gate-Source Charge	$(V_{DS} = -10 \text{ Vdc}, V_{GS} = -4.5 \text{ Vdc}, $ $I_{D} = -4.4 \text{ Adc})$	Q _{gs}	-	1.4	-	nC
Gate-Drain Charge		Q _{gd}	-	2.9	-	nC
BODY-DRAIN DIODE RATINGS						
Diode Forward On-Voltage	$(I_S = -1.7 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$	V _{SD}	_	-0.83	-1.2	Vdc
Reverse Recovery Time $(I_S = -1.7 \text{ Adc, } dI_S/dt = 100 \text{ A}/\mu\text{s})$		t _{rr}	-	30	-	ns

^{4.} Indicates Pulse Test: P.W. = 300 μsec max, Duty Cycle = 2%.
5. Handling precautions to protect against electrostatic discharge are mandatory.

TYPICAL ELECTRICAL CHARACTERISTICS

2

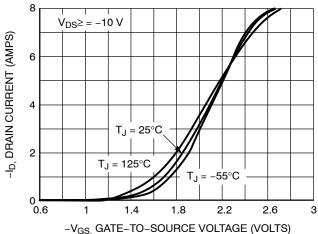


Figure 2. Transfer Characteristics

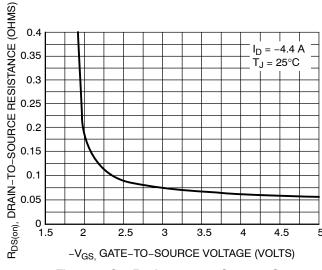


Figure 3. On-Resistance vs. Gate-to-Source Voltage

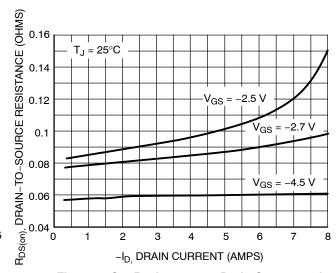
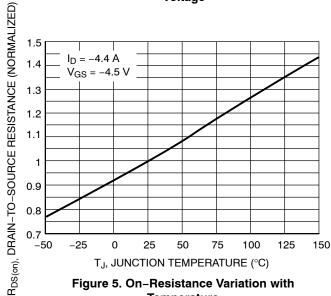



Figure 4. On-Resistance vs. Drain Current and Gate Voltage

Temperature

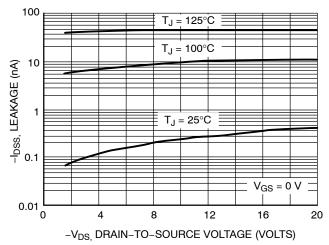
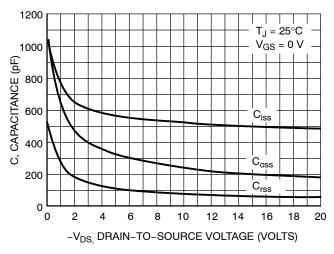
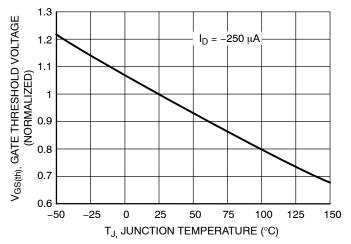



Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL ELECTRICAL CHARACTERISTICS

-V_{GS,} GATE-TO-SOURCE VOLTAGE (VOLTS) 3 | Q1 Q2 2 $T_J = 25^{\circ}C$ $I_D = -4.4 \text{ A}$ 0 1 3 5 6 7 8


QT

 V_{GS}

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

Q_{q.} TOTAL GATE CHARGE (nC)

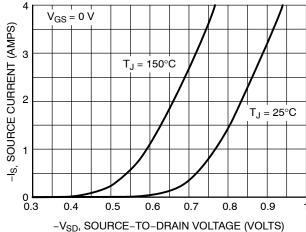


Figure 9. Gate Threshold Voltage Variation with Temperature

Figure 10. Diode Forward Voltage vs. Current

TYPICAL ELECTRICAL CHARACTERISTICS

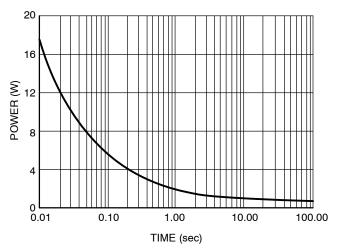


Figure 11. Single Pulse Power

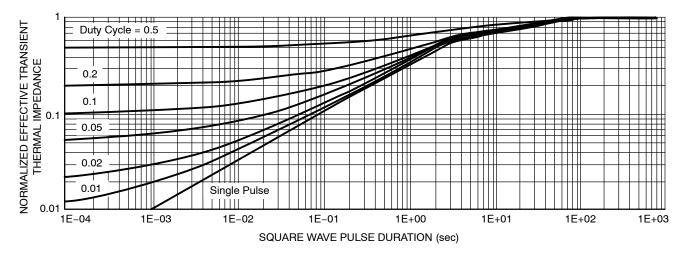
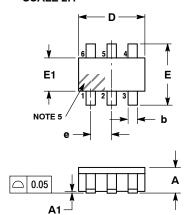


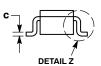
Figure 12. Normalized Thermal Transient Impedance, Junction-to-Ambient

TSOP-6 CASE 318G-02 **ISSUE V**

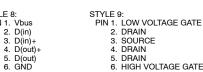

12

DATE 12 JUN 2012

NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM
- LEAD THIORNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSIONS D
- AND E1 ARE DETERMINED AT DATUM H.
 PIN ONE INDICATOR MUST BE LOCATED IN THE INDICATED ZONE.

	MILLIMETERS				
DIM	MIN NOM MAX				
Α	0.90	1.00	1.10		
A1	0.01	0.06	0.10		
b	0.25	0.38	0.50		
С	0.10	0.18	0.26		
D	2.90	3.00	3.10		
Е	2.50	2.75	3.00		
E1	1.30	1.50	1.70		
е	0.85	0.95	1.05		
Ĺ	0.20	0.40	0.60		
L2	0.25 BSC				
М	Uo.		100		



Н

STYLE 1: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SOURCE 5. DRAIN 6. DRAIN	ST P
STYLE 7: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. N/C	ST P

6. HIGH VOL
STYLE 15: PIN 1. ANODE 2. SOURCE 3. GATE

	PIN 1. ANODE
	SOURCE
	GATE
N	DRAIN
N	5. N/C
N	CATHODE

6. LOAD
STYLE 10: PIN 1. D(OUT)+ 2. GND

3. NOT USED 4. GROUND

ENABLE

STYLE 4: PIN 1. N/C 2. V in

3. D(OUT)-4. D(IN)-5. VBUS 6. D(IN)+

STYLE 11: PIN 1. SOURCE 1 4

2. DRAIN 2 DRAIN 2 SOURCE 2 5. GATE 1 6. DRAIN 1/GATE 2

STYLE 5: PIN 1. EMITTER 2 2. BASE 2

3. COLLECTOR 1 4. EMITTER 1

6. COLLECTOR 2

BASE 1

STYLE 12: 6. I/O

2. GROUND 3. I/O 4. I/O

STYLE 6: PIN 1. COLLECTOR 2. COLLECTOR

3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR

2.	SOURCE 2
3.	GATE 2
4.	DRAIN 2
5.	SOURCE 1
6.	DRAIN 1

PIN 1. GATE 1

5. COLLECT 6. EMITTER COLLECTOR

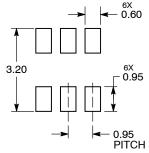
STYLE 14: PIN 1. ANODE 2. SOURCE 3. GATE 4. CATHODE/DRAIN 5. CATHODE/DRAIN 6. CATHODE/DRAIN
6. CATHODE/DRAIN

STYLE 3: PIN 1. ENABLE 2. N/C

5. V in

6. V out

3. R BOOST 4. Vz


STYLE 16: PIN 1. ANODE/CATHODE 2. BASE

3. EMITTER COLLECTOR 5. ANODE CATHODE

STYLE 17: PIN 1. EMITTER 2. BASE

- 3 ANODE/CATHODE CATHODE
- COLLECTOR

RECOMMENDED **SOLDERING FOOTPRINT***

DIMENSIONS: MILLIMETERS

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code Α =Assembly Location

Υ = Year

W = Work Week = Pb-Free Package XXX = Specific Device Code M = Date Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present.

DOCUMENT NUMBER:	98ASB14888C	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TSOP-6		PAGE 1 OF 1

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

 \Diamond