

DOUBLE CHANNEL HIGH SIDE SOLID STATE RELAY

Table 1. General Features

Туре	R _{DS(on)}	Іоит	Vcc
VND920-E	16m Ω	35 A (*)	36 V

(*) Per channel with all the output pins connected to the PCB.

- **CMOS COMPATIBLE INPUT**
- PROPORTIONAL LOAD CURRENT SENSE
- SHORTED LOAD PROTECTION
- UNDERVOLTAGE AND OVERVOLTAGE SHUTDOWN
- OVERVOLTAGE CLAMP
- THERMAL SHUTDOWN
- **CURRENT LIMITATION**
- \blacksquare PROTECTION AGAINST LOSS OF GROUND AND LOSS OF V_{CC}
- VERY LOW STAND-BY POWER DISSIPATION
- REVERSE BATTERY PROTECTION (**)
- IN COMPLIANCE WITH THE 2002/95/EC EUROPEAN DIRECTIVE

DESCRIPTION

The VND920-E is a double chip device made by using STMicroelectronics VIPower M0-3 Technology, intended for driving any kind of load with one side connected to ground. Active V_{CC} pin voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table).

Figure 1. Package

Active current limitation combined with thermal shutdown and automatic restart protect the device against overload. Built-in analog current sense output delivers a current proportional to the load current. Device automatically turns off in case of ground pin disconnection.

Table 2. Order Codes

Package	Tube	Tape and Reel
PowerSO-10 TM	VND920-E	VND920TR-E

Note: (**) See application schematic at page 9.

Rev. 1

October 2004 1/19

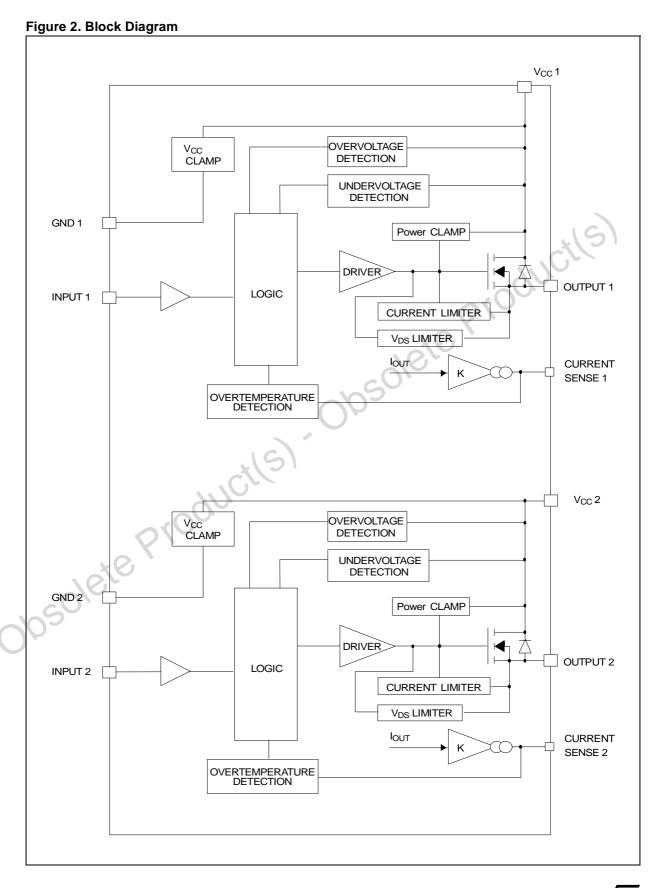


Table 3. Absolute Maximum Ratings (Per each channel)

Symbol	Parameter	Value	Unit
Vcc	DC Supply Voltage	41	V
- V _{CC}	Reverse DC Supply Voltage	- 0.3	V
- I _{GND}	DC Reverse Ground Pin Current	- 200	mA
lout	DC Output Current	Internally Limited	Α
- I _{OUT}	Reverse DC Output Current	- 21	Α
I _{IN}	DC Input Current	+/- 10	mA
\/	Current Sense Maximum Voltage	-3	V
VCSENSE		+15	V
Vesd	Electrostatic Discharge (Human Body Model: R=1.5KΩ; C=100pF) - INPUT - CURRENT SENSE - OUTPUT - V _{CC}	4000 2000 5000 5000	V V V
E _{MAX}	Maximum Switching Energy (L=0.25mH; R _L =0Ω; V _{bat} =13.5V; T _{jstart} =150°C; I _L =45A)	355	mJ
P _{tot}	Power Dissipation T _I ≤25°C	6.25 (See note 1)	W
Tj	Junction Operating Temperature	Internally limited	°C
T _c	Case Operating Temperature	- 40 to 150	°C
T _{STG}	Storage Temperature	- 55 to 150	°C

Note: 1. Per island

Table 4. Configuration Diagram (Top View) & Suggested Connections for Unused and N.C. Pins

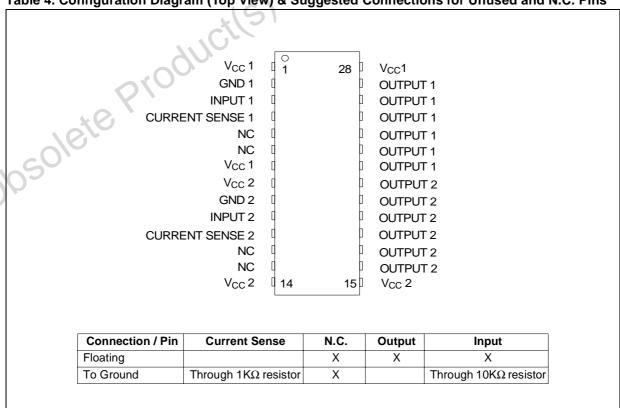


Figure 3. Current and Voltage Conventions

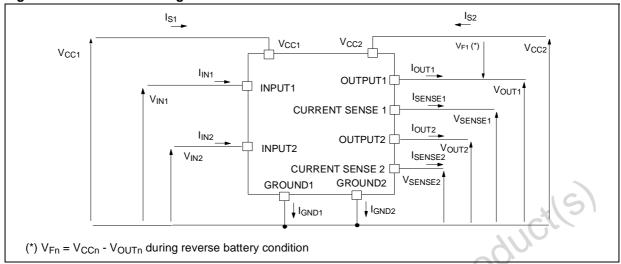


Table 5. Thermal Data

Symbol	Parameter Value		Unit	
R _{thj-lead}	Thermal Resistance Junction-lead	20		°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient (one chip ON)	60 ⁽¹⁾	45 ⁽²⁾	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient (two chips ON)	46 ⁽¹⁾	32 ⁽²⁾	°C/W

Note: (1) When mounted on a standard single-sided FR-4 board with 1cm² of Cu (at least 35µm thick) connected to all V_{CC} pins. Horizontal mounting and no artificial air flow.

ELECTRICAL CHARACTERISTICS (8V<V_{CC}<36V; -40°C<T_j<150°C unless otherwise specified)

(Per island)

Table 6. Power

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Vcc	Operating Supply Voltage		5.5	13	36	V
V _{USD}	Undervoltage Shut-down		3	4	5.5	V
Vov	Overvoltage Shut-down		36			V
	On State Resistance	I _{OUT} =10A; T _j =25°C			15	mΩ
R _{ON}	On State Resistance	I _{OUT} =10A			30	mΩ
		I _{OUT} =3A; V _{CC} =6V			50	mΩ
V _{clamp}	Clamp Voltage	I _{CC} =20mA (See note 2)	41	48	55	V
		Off State; V _{CC} =13V; V _{IN} =V _{OUT} =0V		10	25	μА
Is	Supply Current	Off State; V _{CC} =13V; T _j =25°C; V _{IN} =V _{OUT} =0V		10	20	μΑ
		On State; V_{CC} =13V; V_{IN} =5V; I_{OUT} =0; R_{SENSE} =3.9K Ω			5	mA
I _{L(off1)}	Off State Output Current	V _{IN} =V _{OUT} =0V	0		50	μΑ
I _{L(off2)}	Off State Output Current	V _{IN} =0V; V _{OUT} =3.5V	-75		0	μΑ
I _{L(off3)}	Off State Output Current	$V_{IN}=V_{OUT}=0V$; $V_{CC}=13V$; $T_j=125$ °C			5	μΑ
I _{L(off4)}	Off State Output Current	V _{IN} =V _{OUT} =0V; V _{CC} =13V; T _j =25°C			3	μΑ

Note: 2. V_{clamp} and V_{OV} are correlated. Typical difference is 5V.

Note: (2) When mounted on a standard single-sided FR-4 board with 6cm² of Cu (at least 35μm thick) connected to all V_{CC} pins. Horizontal mounting and no artificial air flow.

ELECTRICAL CHARACTERISTICS (continued)

Table 7. Switching (V_{CC} =13V)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
t _{d(on)}	Turn-on Delay Time	R_L =1.3 Ω (see figure 2)		50		μs
t _{d(off)}	Turn-off Delay Time	R _L =1.3Ω (see figure 2)		50		μs
dV _{OUT} / dt _(on)	Turn-on Voltage Slope	R_L =1.3 Ω (see figure 2)		See relative diagram		V/μs
dV _{OUT} / dt _(off)	Turn-off Voltage Slope	$R_L=1.3\Omega$ (see figure 2)		See relative diagram		V/μs

Table 8. Logic Input

	0 1					
Symbol	Parameter	Test Conditions		Тур	Max	Unit
Symbol	Parameter	Test Conditions		Тур	Max	Unit
V _{IL}	Input Low Level		70	0	1.25	V
I _{IL}	Low Level Input Current	V _{IN} =1.25V	1			μΑ
V _{IH}	Input High Level	16:16	3.25			V
l _{IH}	High Level Input Current	V _{IN} =3.25V			10	μΑ
V _{I(hyst)}	Input Hysteresis Voltage	202	0.5			V

Table 9. V_{CC} - Output Diode

Symbol	Parameter	Test Conditions		Тур.	Max.	Unit
V _F	Forward on Voltage	-l _{OUT} =5A; T _j =150°C			0.6	V

Table 10. Protections (see note 3)

Symbol	Parameter	Test Conditions		Тур	Max	Unit
T _{TSD}	Shut-down Temperature		150	175	200	°C
T _R	Reset Temperature		135			°C
T _{hyst}	Thermal Hysteresis		7	15		°C
lu	I _{lim} DC Short Circuit Current	V _{CC} =13V	30	45	75	Α
'lim		5V <v<sub>CC<36V</v<sub>			75	Α
V _{demag}	Turn-off Output Clamp	IOUT=2A; VIN=0V; L=6mH	V _{CC} -41	V _{CC} -48	Vcc-55	V
v demag	Voltage	1001-2A, VIN-0V, L-01111	VCC-41	VCC-40	VCC-33	"
V _{ON}	Output Voltage Drop Limitation	I _{OUT} =1A; T _j =-40°C+150°C		50		mV

Note: 3. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles.

ELECTRICAL CHARACTERISTICS (continued)

Table 11. Current Sense ($9V \le V_{CC} \le 16V$) (See Fig. 4)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
K ₁	IOUT/ISENSE	I _{OUT} =1A; V _{SENSE} =0.5V; T _j = -40°C150°C	3300	4400	6000	
dK ₁ /K ₁	Current Sense Ratio Drift	I _{OUT} =1A; V _{SENSE} =0.5V; T _j = -40°C+150°C	-10		+10	%
K ₂	Iout/Isense	I _{OUT} =10A; V _{SENSE} =4V; T _j =-40°C	4200	4900	6000	
N2	IOUT/ISENSE	T _j =25°C150°C	4400	4900	5750	
dK ₂ /K ₂	Current Sense Ratio Drift	I _{OUT} =10A; V _{SENSE} =4V; T _j =-40°C+150°C	-8		+8	%
I/	1 /1	I _{OUT} =30A; V _{SENSE} =4V; T _j =-40°C	4200	4900	5500	71
K ₃	I _{OUT} /I _{SENSE}	T _j =25°C150°C	4400	4900	5250	
dK ₃ /K ₃	Current Sense Ratio Drift	I _{OUT} =30A; V _{SENSE} =4V; T _j =-40°C+150°C	-6	JQ/	+6	%
I _{SENSEO}	Analog Sense Leakage Current	V _{CC} =616V; I _{OUT} =0A;V _{SENSE} =0V; T _j =-40°C+150°C	0		10	μА
V	Max Analog Sense Output	V _{CC} =5.5V; I _{OUT} =5A; R _{SENSE} =10KΩ	2			V
V _{SENSE}	Voltage	V _{CC} >8V; I _{OUT} =10A; R _{SENSE} =10KΩ	4			V
VSENSEH	Sense Voltage in Overtemperature conditions	V _{CC} =13V; R _{SENSE} =3.9KΩ		5.5		V
Rvsenseh	Analog Sense Output Impedance in Overtemperature Condition	V _{CC} =13V; T _j >T _{TSD} ; All channels open		400		Ω
tDSENSE	Current sense delay response	to 90% I _{SENSE} (see note 4)			500	μs

Note: 4. Current sense signal delay after positive input slope

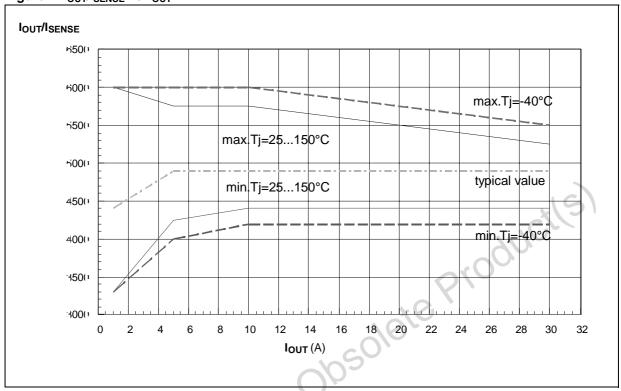


Figure 5. Switching Characteristics (Resistive load R_L =1.3 Ω)

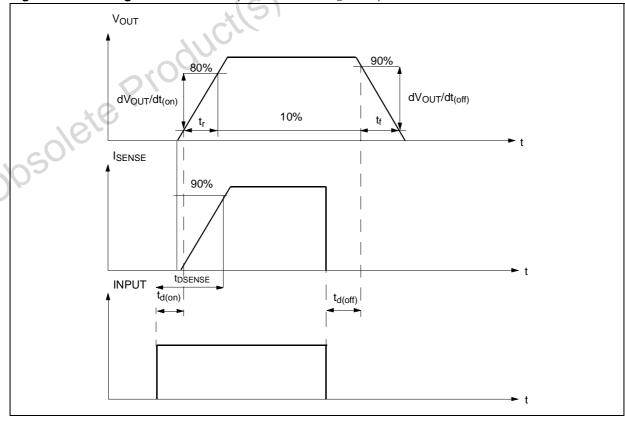
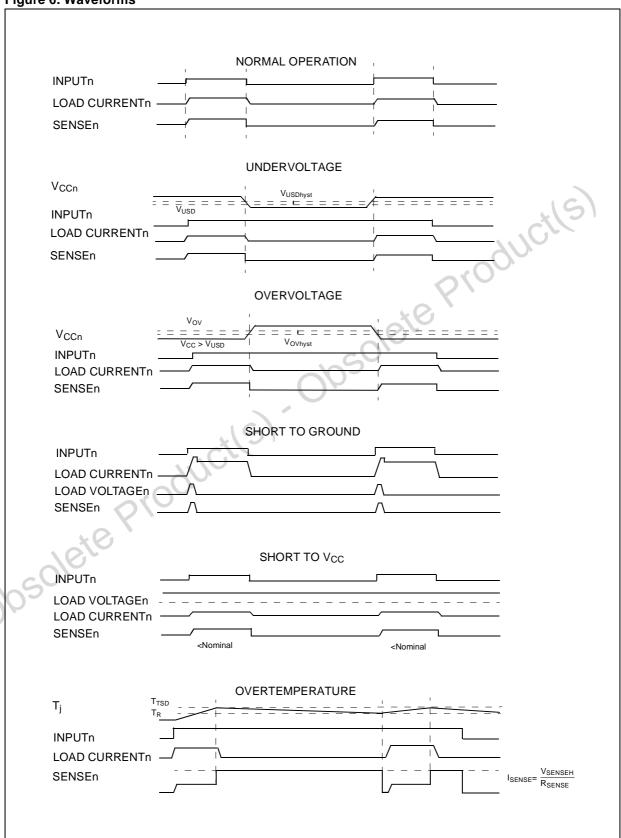


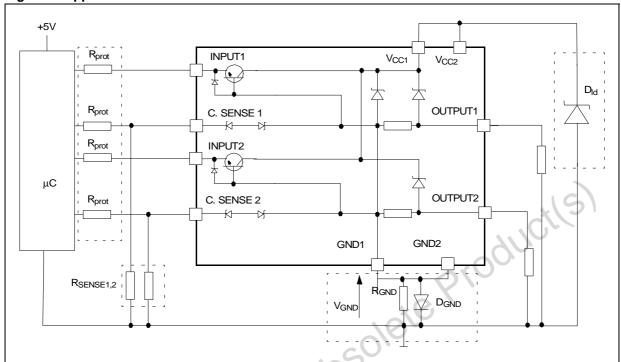
Table 12. Truth Table (per each channel)

CONDITIONS	INPUT	OUTPUT	CURRENT SENSE
Normal aparation	L	L	0
Normal operation	Н	Н	Nominal
Overtemperature	L	L	0
Overtemperature	Н	L	V _{SENSEH}
Undervoltage	L	L	0
Officervoltage	Н	L	0
Overveltage	L	L	0
Overvoltage	Н	L	0
	L	L	0
Short circuit to GND	Н	L	(T _j <t<sub>TSD) 0</t<sub>
	Н	L	$(T_{j} < T_{TSD}) 0$ $(T_{j} > T_{TSD}) V_{SENSEH}$
Short circuit to V _{CC}	L	Н	0
Short chedit to AGG	Н	Н	< Nominal
Negative output voltage clamp	L	L	0


Table 13. Electrical Transient Requirements On $V_{\mbox{\footnotesize{CC}}}$ Pin

ISO T/R 7637/1	TEST LEVELS						
Test Pulse	I	II	III	IV	Delays and Impedance		
1	-25 V	-50 V	-75 V	-100 V	2 ms 10 Ω		
2	+25 V	+50 V	+75 V	+100 V	0.2 ms 10 Ω		
3a	-25 V	-50 V	-100 V	-150 V	0.1 μs 50 Ω		
3b	+25 V	+50 V	+75 V	+100 V	0.1 μs 50 Ω		
4	-4 V	-5 V	-6 V	-7 V	100 ms, 0.01 Ω		
5	+26.5 V	+46.5 V	+66.5 V	+86.5 V	400 ms, 2 Ω		

ISO T/R 7637/1	TEST LEVELS RESULTS			
Test Pulse		II	III	IV
1	С	С	С	С
2	С	С	С	С
3a	С	С	С	С
3b	С	С	С	С
G 4	С	С	С	С
5	С	E	E	E


CLASS	CONTENTS
С	All functions of the device are performed as designed after exposure to disturbance.
Е	One or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device.

47/ 9/19

Figure 7. Application Schematic

GND PROTECTION NETWORK AGAINST REVERSE BATTERY

Solution 1: Resistor in the ground line (R_{GND} only). This can be used with any type of load.

The following is an indication on how to dimension the $R_{\mbox{\footnotesize{GND}}}$ resistor.

1) $R_{GND} \le 600 \text{mV} / (I_{S(on)max})$.

2) $R_{GND} \ge (-V_{CC}) / (-I_{GND})$

where -I_{GND} is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device's datasheet.

Power Dissipation in R_{GND} (when $V_{CC}\!\!<\!\!0$: during reverse battery situations) is:

 $P_D = (-V_{CC})^2 / R_{GND}$

This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where $I_{S(on)max}$ becomes the sum of the maximum on-state currents of the different devices.

Please note that if the microprocessor ground is not common with the device ground then the R_{GND} will produce a shift ($I_{S(on)max} \ ^* R_{GND}$) in the input thresholds and the status output values. This shift will vary depending on how many devices are ON in the case of several high side drivers sharing the same $R_{GND}.$

If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below).

Solution 2: A diode (DGND) in the ground line.

A resistor (R_{GND} =1k Ω) should be inserted in parallel to D_{GND} if the device will be driving an inductive load.

This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network.

LOAD DUMP PROTECTION

 D_{ld} is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds V_{CC} max DC rating. The same applies if the device will be subject to transients on the V_{CC} line that are greater than the ones shown in the ISO T/R 7637/1 table.

Series resistor in INPUT and STATUS lines are also required to prevent that, during battery voltage transient, the current exceeds the Absolute Maximum Rating.

Safest configuration for unused INPUT and STATUS pin is to leave them unconnected.

μC I/Os PROTECTION:

If a ground protection network is used and negative transients are present on the V_{CC} line, the control pins will be pulled negative. ST suggests to insert a resistor (R_{prot}) in line to prevent the μC I/Os pins to latch-up.

The value of these resistors is a compromise between the leakage current of μC and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of μC I/Os.

- $V_{CCpeak}/I_{latchup} \le R_{prot} \le (V_{OH\mu C}-V_{IH}-V_{GND}) / I_{IHmax}$ Calculation example:

For V_{CCpeak}= - 100V and I_{latchup} \geq 20mA; V_{OH μ C} \geq 4.5V $5k\Omega \leq R_{prot} \leq 65k\Omega$.

Recommended R_{prot} value is $10k\Omega$.

Figure 8. Off State Output Current

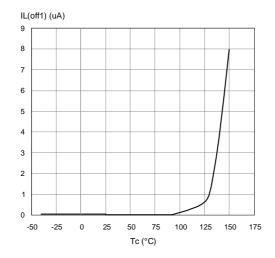


Figure 9. High Level Input Current

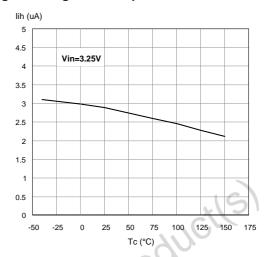


Figure 10. Input Clamp Voltage

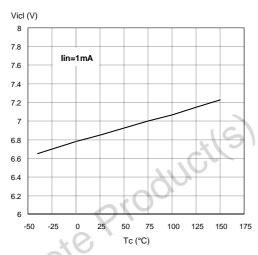


Figure 12. On State Resistance Vs V_{CC}

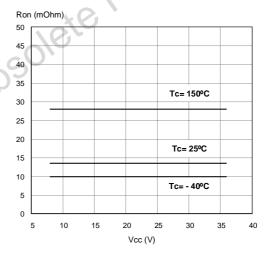


Figure 11. On State Resistance Vs Tcase

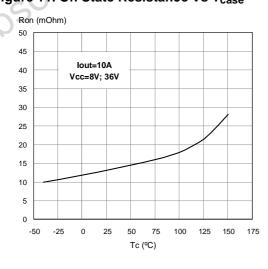


Figure 13. Input High Level

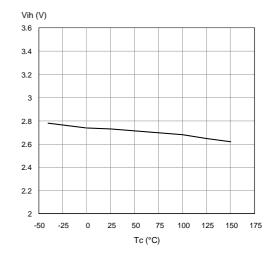


Figure 14. Input Low Level

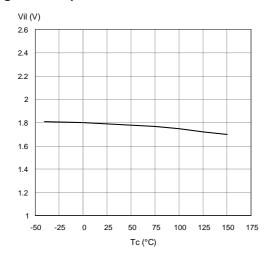


Figure 17. Input Hysteresis Voltage

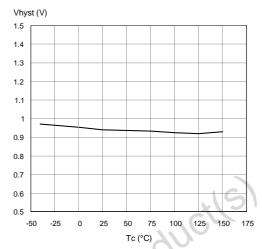


Figure 15. Turn-on Voltage Slope

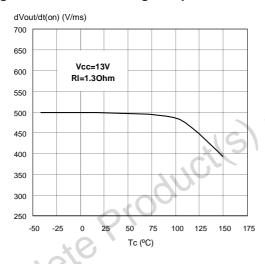


Figure 18. Turn-off Voltage Slope

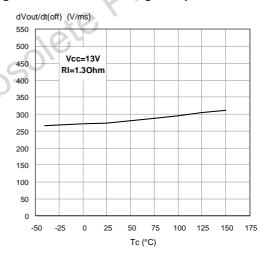


Figure 16. Overvoltage Shutdown

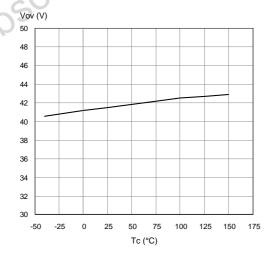
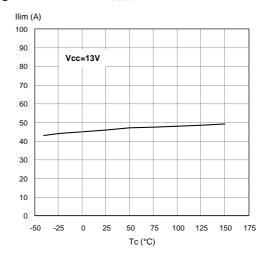



Figure 19. I_{LIM} Vs T_{case}

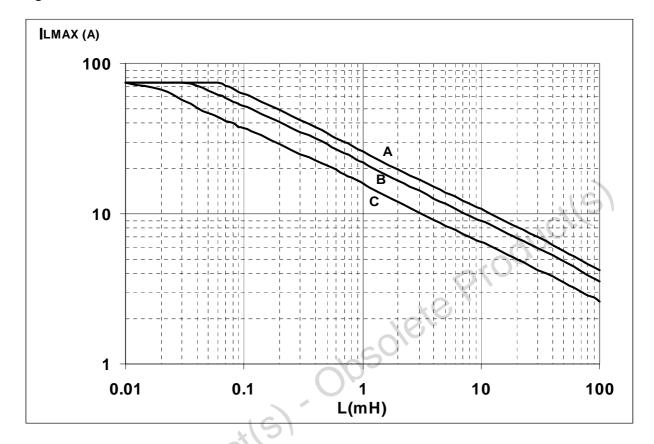
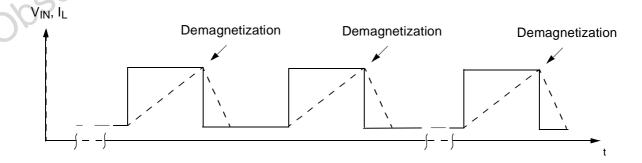


Figure 20. Maximum turn off current versus load inductance


A = Single Pulse at T_{Jstart} =150°C

B= Repetitive pulse at T_{Jstart}=100°C

C= Repetitive Pulse at T_{Jstart}=125°C

Conditions: V_{CC}=13.5V Values are generated with R_L = 0Ω

In case of repetitive pulses, T_{jstart} (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C.

SO-28 Double Island Thermal Data

Figure 21. Double Island PC Board

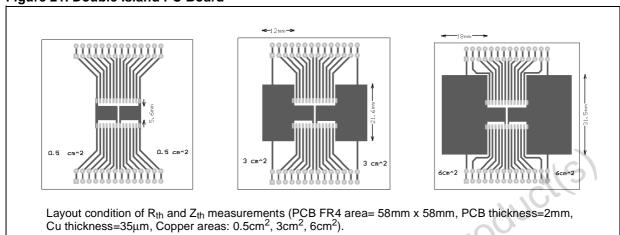
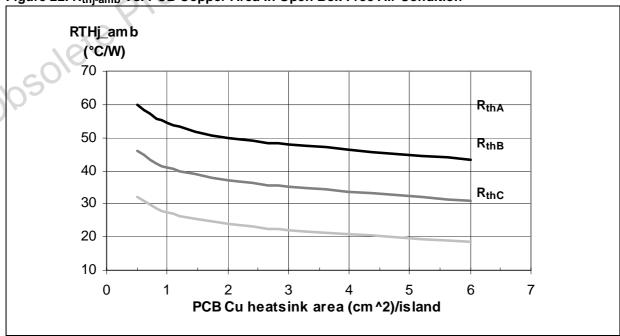


Table 14. Thermal Calculation According To The Pcb Heatsink Area


Chip 1	Chip 2	T _{jchip1}	T _{jchip2}	Note
ON	OFF	R _{thA} x P _{dchip1} + T _{amb}	R _{thC} x P _{dchip1} + T _{amb}	
OFF	ON	R _{thC} x P _{dchip2} + T _{amb}	R _{thA} x P _{dchip2} + T _{amb}	
ON	ON	R _{thB} x (P _{dchip1} + P _{dchip2}) + T _{amb}	R _{thB} x (P _{dchip1} + P _{dchip2}) + T _{amb}	P _{dchip1} =P _{dchip2}
ON	ON	$(R_{thA} \times P_{dchip1}) + R_{thC} \times P_{dchip2} + T_{amb}$	(R _{thA} x P _{dchip2}) + R _{thC} x P _{dchip1} + T _{amb}	P _{dchip1} ≠P _{dchip2}

R_{thA} = Thermal resistance Junction to Ambient with one chip ON

R_{thB} = Thermal resistance Junction to Ambient with both chips ON and P_{dchip1}=P_{dchip2}

R_{thC} = Mutual thermal resistance

Figure 22. R_{thj-amb} Vs. PCB Copper Area In Open Box Free Air Condition

14/19

Downloaded from **Arrow.com**.

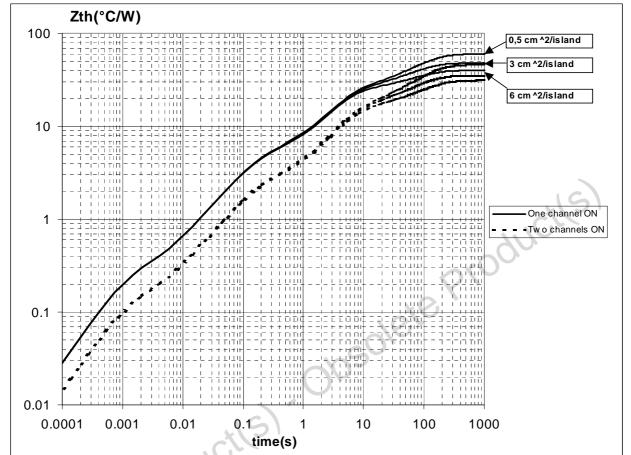
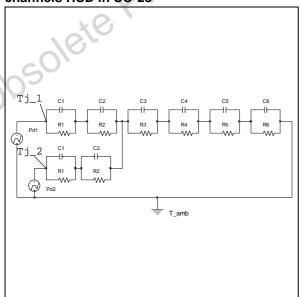



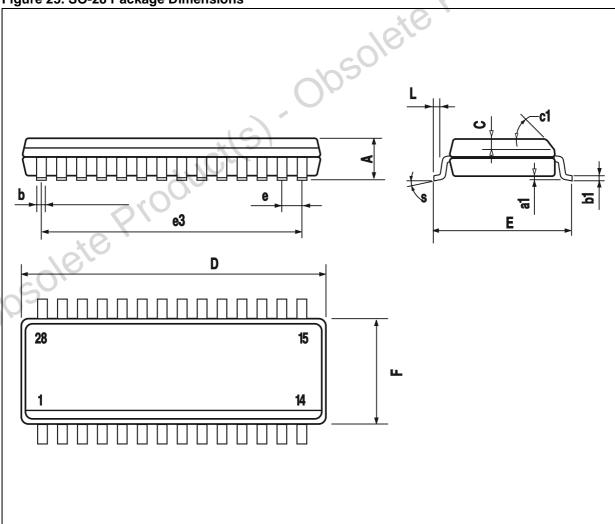
Figure 23. SO-28 Thermal Impedance Junction Ambient Single Pulse

Figure 24. Thermal fitting model of a two channels HSD in SO-28

Pulse calculation formula

$$\begin{split} Z_{TH\delta} &= R_{TH} \cdot \delta + Z_{THtp} (1 - \delta) \\ \text{where} \quad \delta &= t_p / T \end{split}$$

Table 15. Thermal Parameter


Area/island (cm ²)	0.5	6
R1= (°C/W)	0.02	
R2= (°C/W)	0.1	
R3= (°C/W)	2.2	
R4= (°C/W)	11	
R5= (°C/W)	15	
R6= (°C/W)	30	13
C1= (W.s/°C)	0.0015	
C2= (W.s/°C)	7.00E-03	
C3= (W.s/°C)	1.50E-02	
C4= (W.s/°C)	0.2	
C5= (W.s/°C)	1.5	
C6= (W.s/°C)	5	8

PACKAGE MECHANICAL

Table 16. SO-28 Mechanical Data

Symbol	millimeters			
Symbol	Min	Тур	Max	
A			2.65	
a1	0.10		0.30	
b	0.35		0.49	
b1	0.23		0.32	
С		0.50		
c1		45° (typ.)		
D	17.7		18.1	
Е	10.00		10.65	
е		1.27	161	
e3		16.51		
F	7.40		7.60	
L	0.40		1.27	
S		8° (max.)		

Figure 25. SO-28 Package Dimensions

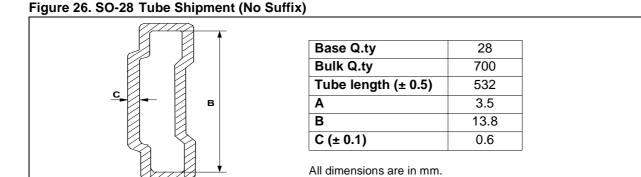
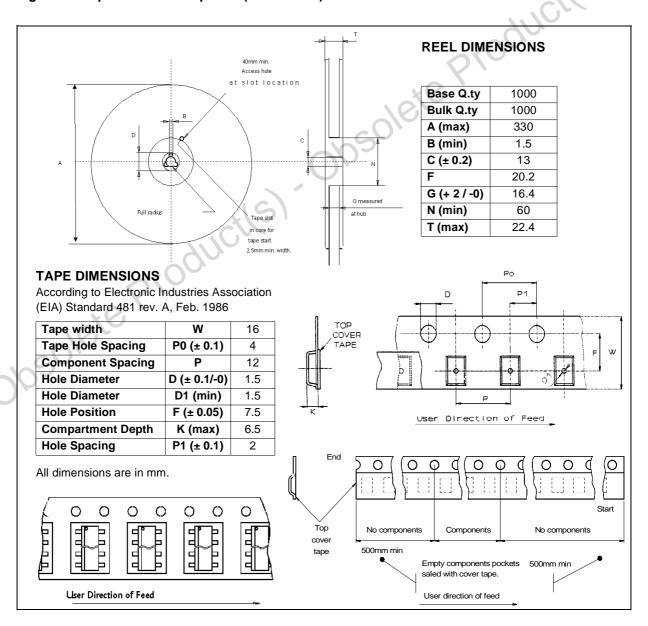



Figure 27. Tape And Reel Shipment (Suffix "TR")

REVISION HISTORY

Date	Revision	Description of Changes
Oct. 2004	1	- First Issue.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications metioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2004 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

47/