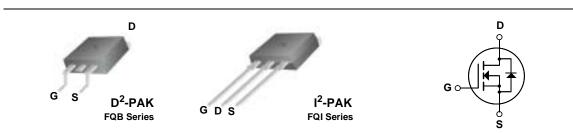
FAIRCHILD

SEMICONDUCTOR

FQB65N06 / FQI65N06 60V N-Channel MOSFET


General Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for low voltage applications such as automotive, DC/ DC converters, and high efficiency switching for power management in portable and battery operated products.

Features

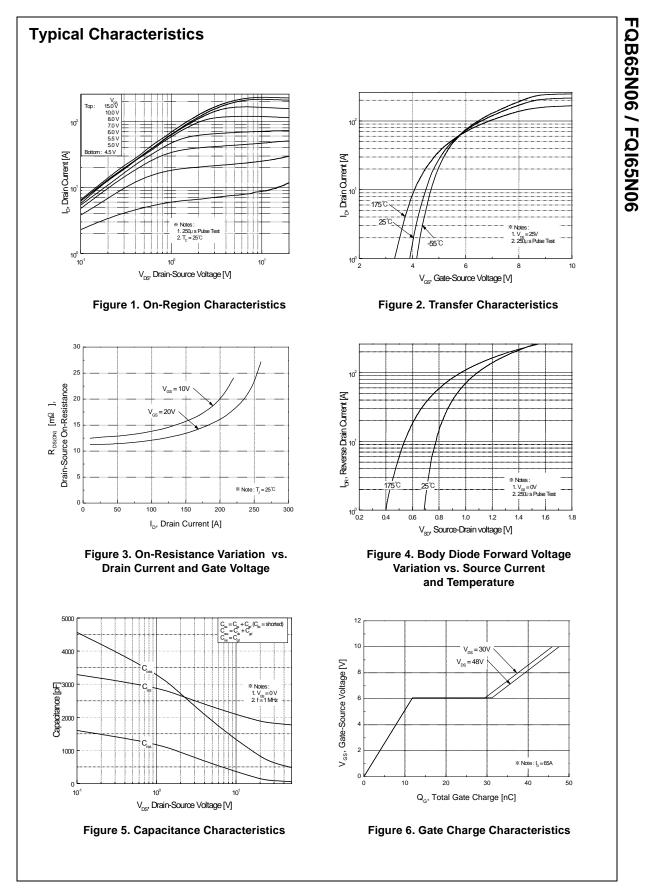
- 65A, 60V, $R_{DS(on)} = 0.016\Omega @V_{GS} = 10 V$
- Low gate charge (typical 48 nC)
- Low Crss (typical 100 pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability
- 175°C maximum junction temperature rating

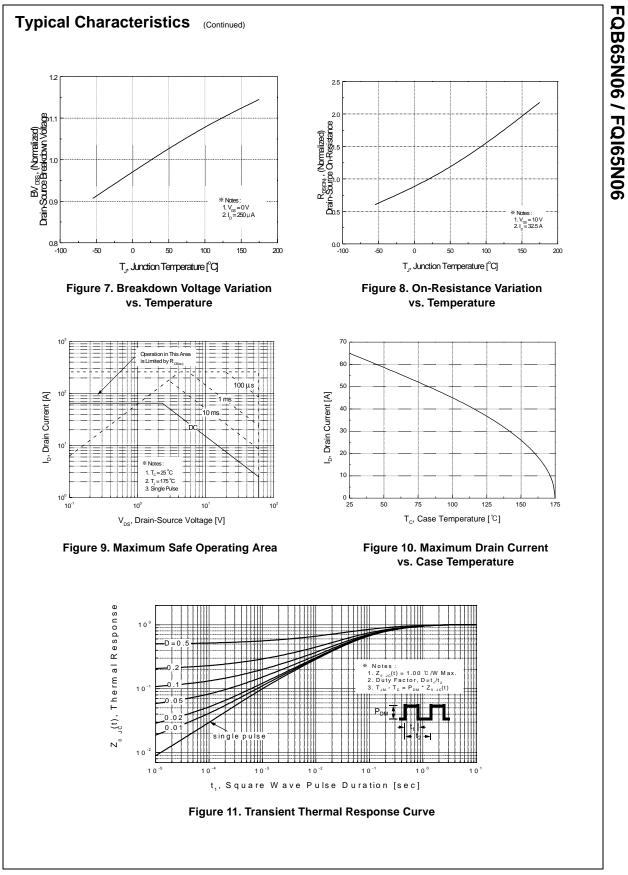
Absolute Maximum Ratings T_c = 25°C unless otherwise noted

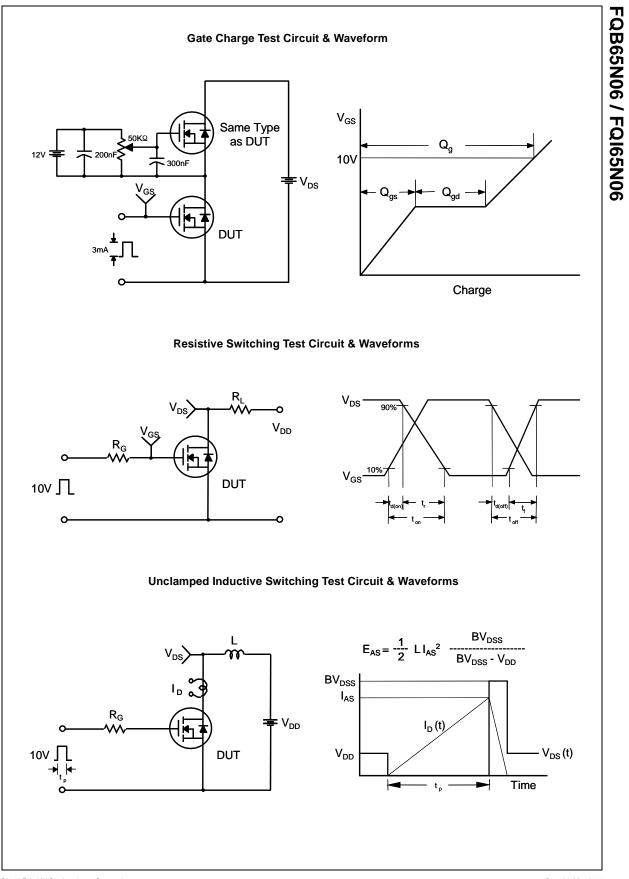
Symbol	Parameter		FQB65N06 / FQI65N06	Units
V _{DSS}	Drain-Source Voltage		60	V
I _D	Drain Current - Continuous ($T_C = 25^{\circ}C$)		65	А
	- Continuous (T _C = 100)°C)	46.1	А
I _{DM}	Drain Current - Pulsed	(Note 1)	260	А
V _{GSS}	Gate-Source Voltage		± 25	V
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		650	mJ
I _{AR}	Avalanche Current (Note 1)		65	А
E _{AR}	Repetitive Avalanche Energy	(Note 1)	15.0	mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)		7.0	V/ns
PD	Power Dissipation $(T_A = 25^{\circ}C)^{*}$		3.75	W
	Power Dissipation $(T_C = 25^{\circ}C)$		150	W
- Derate above 25°C			1.00	W/°C
T _J , T _{stg}	Operating and Storage Temperature Range		-55 to +175	°C
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C

Thermal Characteristics

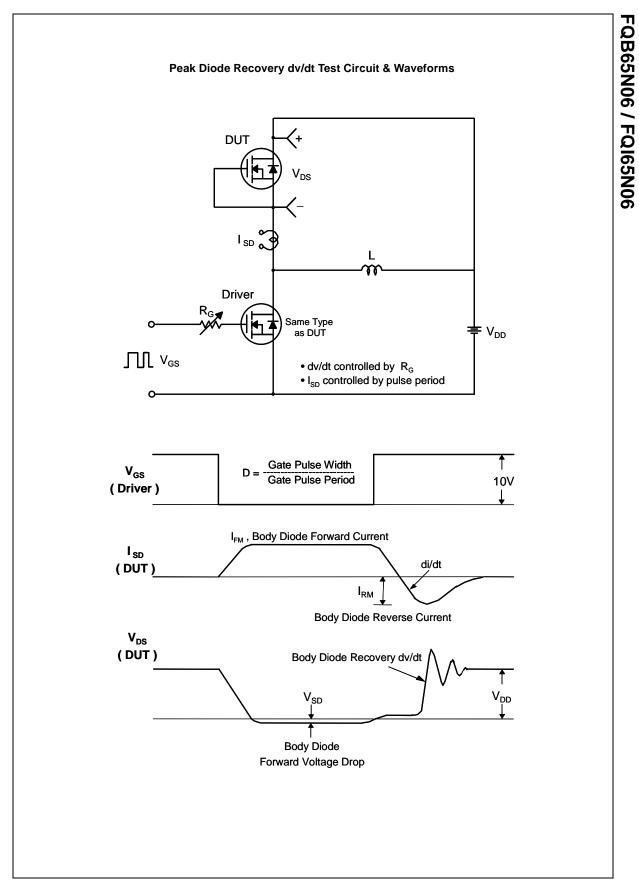
Symbol	Parameter	Тур	Max	Units
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case		1.00	°C/W
R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient *		40	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W

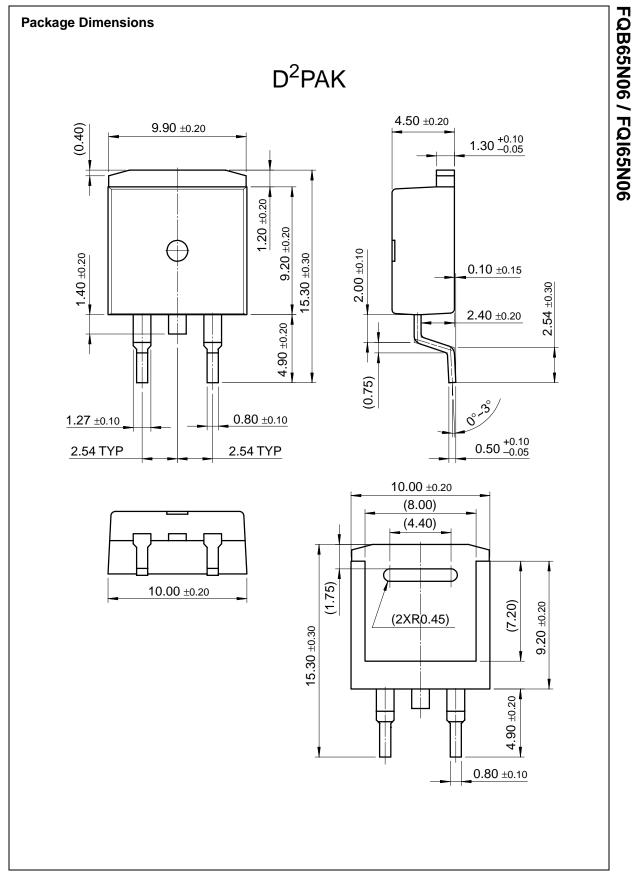

©2001 Fairchild Semiconductor Corporation

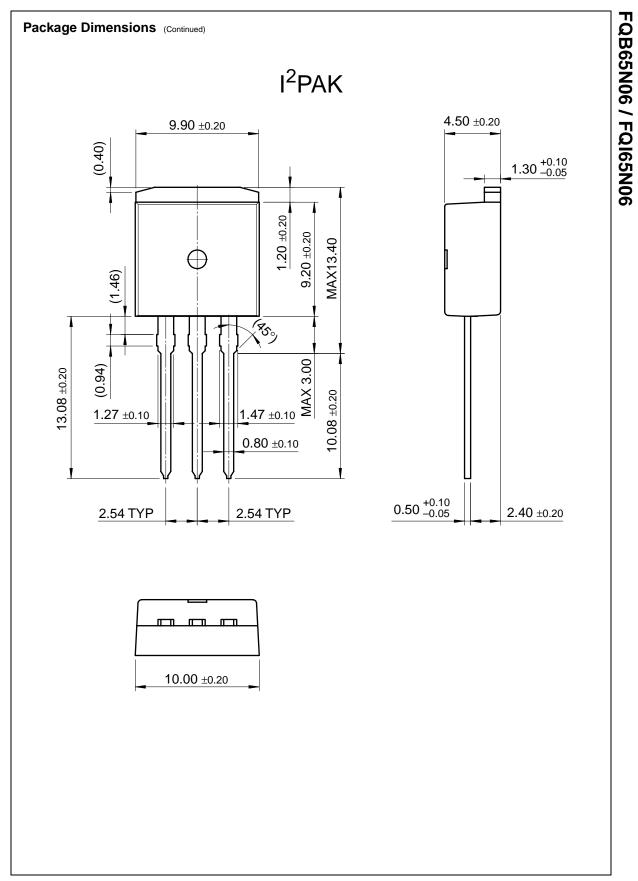

May 2001


TM

P I _D = 2 t V _{DS} = vorse V _{GS} = vverse V _{GS} = V _{DS} = V _{DS} = V _{DS} = V _{DS} =	= 0 V, I_D = 250µ A 250 µA, Reference = 60 V, V_{GS} = 0 V = 48 V, T_C = 150°0 = 25 V, V_{DS} = 0 V = -25 V, V_{DS} = 0 V = V_{GS} , I_D = 250 µ/ = 10 V, I_D = 32.5 A = 25 V, I_D = 32.5 A	ed to 25°C C / A	60 2.0 	 0.07 0.012	 1 100 -100 4.0	V V/°C μA μA nA NA
P I _D = 2 t V _{DS} = vorse V _{GS} = vverse V _{GS} = V _{DS} = V _{DS} = V _{DS} = V _{DS} =	250 μA, Reference = 60 V, $V_{GS} = 0$ V = 48 V, $T_C = 150^{\circ}$ (= 25 V, $V_{DS} = 0$ V = -25 V, $V_{DS} = 0$ V = V_{GS} , $I_D = 250$ μμ = 10 V, $I_D = 32.5$ A	ed to 25°C C / A	 2.0 	0.07 	 1 100 -100 4.0	V/°C μA μA nA nA
P I _D = 2 t V _{DS} = vorse V _{GS} = vverse V _{GS} = V _{DS} = V _{DS} = V _{DS} = V _{DS} =	250 μA, Reference = 60 V, $V_{GS} = 0$ V = 48 V, $T_C = 150^{\circ}$ (= 25 V, $V_{DS} = 0$ V = -25 V, $V_{DS} = 0$ V = V_{GS} , $I_D = 250$ μμ = 10 V, $I_D = 32.5$ A	ed to 25°C C / A	 2.0		10 100 -100 4.0	μA μA nA nA
t V _{DS} : rward V _{GS} : verse V _{GS} : V _{DS} : V _{DS} : V _{DS} :	$= 48 \text{ V}, \text{T}_{\text{C}} = 150^{\circ}\text{H}$ $= 25 \text{ V}, \text{V}_{\text{DS}} = 0 \text{ V}$ $= -25 \text{ V}, \text{V}_{\text{DS}} = 0 \text{ V}$ $= \text{V}_{\text{GS}}, \text{I}_{\text{D}} = 250 \mu\text{M}$ $= 10 \text{ V}, \text{I}_{\text{D}} = 32.5 \text{ A}$	C / A	 2.0 		10 100 -100 4.0	μA nA nA
V _{DS} = rward V _{GS} = verse V _{GS} = V _{DS} = V _{DS} = V _{DS} = V _{DS} =	$= 25 \text{ V}, \text{ V}_{\text{DS}} = 0 \text{ V}$ $= -25 \text{ V}, \text{ V}_{\text{DS}} = 0 \text{ V}$ $= \text{ V}_{\text{GS}}, \text{ I}_{\text{D}} = 250 \mu\text{J}$ $= 10 \text{ V}, \text{ I}_{\text{D}} = 32.5 \text{ A}$	/ A	 2.0		100 -100 4.0	nA nA
Verse V _{GS} = V _{DS} = V _{GS} = V _{DS} = V _{DS} = V _{DS} = V _{DS} =	= -25 V, V _{DS} = 0 V = V _{GS} , I _D = 250 μ <i>μ</i> = 10 V, I _D = 32.5 A	/ A	 2.0 		-100	nA
V _{DS} : V _{GS} : V _{DS} :	= V _{GS} , I _D = 250 μ <i>ι</i> = 10 V, I _D =32.5 A	A	2.0		4.0	
V _{GS} = V _{DS} =	= 10 V, I _D = 32.5 A					V
V _{GS} = V _{DS} =	= 10 V, I _D = 32.5 A					V
V _{GS} = V _{DS} =	= 10 V, I _D = 32.5 A					v
V _{DS} =	-	A (Note 4)		0.012	0.040	
V _{DS} :	= 25 V, I _D = 32.5 A	A (Note 4)			0.016	Ω
20				48		S
20						
20				4050	0440	
t – 1	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz			1850	2410	pF
	0 MHz			700 100	910 130	pF pF
	$V_{DD} = 30 \text{ V}, \text{ I}_{D} = 32.5 \text{ A},$ R _G = 25 Ω			20	50 330	ns
				160	330	ns
				90	190	ns
		(Note 4, 5)		105	220	ns
V _{DS} =	= 48 V, I _D = 65 A,			48	65	nC
V _{GS} :	V _{GS} = 10 V (Note 4, 5)			12		nC
				19.5		nC
ics and Ma	vimum Ratin	ae				
		93			65	А
Diode Forward	d Current				260	А
Itage V _{GS} :	= 0 V, I _S = 65 A				1.5	V
				62		ns
		(Note 4)		110		nC
	R _G =	$R_{G} = 25 \Omega$ $V_{DS} = 48 V, I_{D} = 65 A,$ $V_{GS} = 10 V$ $V_{GS} = 10 V$ $V_{GS} = 0 V, I_{S} = 65 A$ $V_{GS} = 0 V, I_{S} = 65 A,$ $dI_{F} / dt = 100 A/\mu s$	$R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 48 V, I_{D} = 65 A,$ $V_{GS} = 10 V$ (Note 4, 5) (No	$V_{DD} = 30 \text{ V}, I_D = 32.5 \text{ A}, \qquad$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $


FQB65N06 / FQI65N06





Rev. A1. May 2001

Rev. A1. May 2001

Rev. A1. May 2001

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx TM Bottomless TM CoolFET TM CROSSVOLT TM DenseTrench TM DOME TM EcoSPARK TM E ² CMOS TM EnSigna TM EACT TM	FAST [®] FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MICROWIRF™	OPTOPLANAR [™] PACMAN [™] POP [™] PowerTrench [®] QFET [™] QS [™] QT Optoelectronics [™] Quiet Series [™] SLIENT SWITCHER [®] SMART START [™]	SuperSOT [™] -3 SuperSOT [™] -6 SuperSOT [™] -8 SyncFET [™] TinyLogic [™] UHC [™] UHC [™] UltraFET [®] VCX [™]
FACT™ FACT Quiet Series™	MICROWIRE™ OPTOLOGIC™	SMART START™ Stealth™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.