35 V, 5 A, Low V_{CE(sat)} PNP Transistor

ON Semiconductor's e^2 PowerEdge family of low $V_{CE(sat)}$ transistors are miniature surface mount devices featuring ultra low saturation voltage ($V_{CE(sat)}$) and high current gain capability. These are designed for use in low voltage, high speed switching applications where affordable efficient energy control is important.

Typical application are DC-DC converters and power management in portable and battery powered products such as cellular and cordless phones, PDAs, computers, printers, digital cameras and MP3 players. Other applications are low voltage motor controls in mass storage products such as disc drives and tape drives. In the automotive industry they can be used in air bag deployment and in the instrument cluster. The high current gain allows e²PowerEdge devices to be driven directly from PMU's control outputs, and the Linear Gain (Beta) makes them ideal components in analog amplifiers.

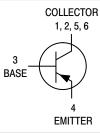
Features

- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant*

MAXIMUM RATINGS (T_A = 25°C)

Rating	Symbol	Max	Unit
Collector-Emitter Voltage	V _{CEO}	-35	Vdc
Collector-Base Voltage	V_{CBO}	-55	Vdc
Emitter-Base Voltage	V_{EBO}	-5.0	Vdc
Collector Current - Continuous	I _C	-2.0	Adc
Collector Current - Peak	I _{CM}	-5.0	Α
Electrostatic Discharge	ESD	HBM Class 3 MM Class C	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


ON Semiconductor®

http://onsemi.com

\$ 5.0 AMPS PNP LOW $V_{CE(sat)}$ TRANSISTOR EQUIVALENT $R_{DS(on)}$ 100 $m\Omega$

TSOP-6 CASE 318G STYLE 6

MARKING DIAGRAM

VS8 = Device Code
M = Date Code*

• = Pb-Free Package

(*Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
NSS35200MR6T1G	TSOP-6 (Pb-Free)	3,000 / Tape & Reel
SNSS35200MR6T1G	TSOP-6 (Pb-Free)	3,000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation T _A = 25°C Derate above 25°C	P _D (Note 1)	625 5.0	mW mW/°C
Thermal Resistance, Junction-to-Ambient	R _{θJA} (Note 1)	200	°C/W
Total Device Dissipation T _A = 25°C Derate above 25°C	P _D (Note 2)	1.0 8.0	W mW/°C
Thermal Resistance, Junction-to-Ambient	R _{θJA} (Note 2)	120	°C/W
Thermal Resistance, Junction-to-Lead #1	$R_{ heta JL}$	80	°C/W
Total Device Dissipation (Single Pulse < 10 sec.)	P _{Dsingle} (Notes 2 & 3)	1.75	W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

FR-4 @ Minimum Pad.
 FR-4 @ 1.0 X 1.0 inch Pad.
 Refer to Figure 8.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Typical	Max	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage (I _C = -10 mAdc, I _B = 0)	V _{(BR)CEO}	-35	-45	-	Vdc
Collector – Base Breakdown Voltage $(I_C = -0.1 \text{ mAdc}, I_E = 0)$	V _{(BR)CBO}	-55	-65	-	Vdc
Emitter – Base Breakdown Voltage ($I_E = -0.1$ mAdc, $I_C = 0$)	V _{(BR)EBO}	-5.0	-7.0	_	Vdc
Collector Cutoff Current (V _{CB} = -35 Vdc, I _E = 0)	I _{CBO}	-	-0.03	-0.1	μAdc
Collector-Emitter Cutoff Current (V _{CES} = -35 Vdc)	I _{CES}	-	-0.03	-0.1	μAdc
Emitter Cutoff Current (V _{EB} = -4.0 Vdc)	I _{EBO}	-	-0.01	-0.1	μAdc
ON CHARACTERISTICS	•				
DC Current Gain (Note 4) ($I_C = -1.0 \text{ A}, V_{CE} = -1.5 \text{ V}$) ($I_C = -1.5 \text{ A}, V_{CE} = -1.5 \text{ V}$) ($I_C = -2.0 \text{ A}, V_{CE} = -3.0 \text{ V}$)	h _{FE}	100 100 100	200 200 200	- 400 -	
Collector – Emitter Saturation Voltage (Note 4) ($I_C = -0.8$ A, $I_B = -0.008$ A) ($I_C = -1.2$ A, $I_B = -0.012$ A) ($I_C = -2.0$ A, $I_B = -0.02$ A)	V _{CE(sat)}	- - -	-0.125 -0.175 -0.260	-0.15 -0.20 -0.31	V
Base – Emitter Saturation Voltage (Note 4) $(I_C = -1.2 \text{ A}, I_B = -0.012 \text{ A})$	V _{BE(sat)}	-	-0.68	-0.85	V
Base – Emitter Turn–on Voltage (Note 4) $(I_C = -2.0 \text{ A}, V_{CE} = -3.0 \text{ V})$	V _{BE(on)}	_	-0.81	-0.875	V
Cutoff Frequency ($I_C = -100 \text{ mA}$, $V_{CE} = -5.0 \text{ V}$, $f = 100 \text{ MHz}$)	f _T	100	-	-	MHz
Input Capacitance (V _{EB} = -0.5 V, f = 1.0 MHz)	Cibo	-	600	650	pF
Output Capacitance (V _{CB} = -3.0 V, f = 1.0 MHz)	Cobo	=	85	100	pF
Turn-on Time (V $_{CC}$ = -10 V, I $_{B1}$ = -100 mA, I $_{C}$ = -1 A, R $_{L}$ = 3 Ω)	t _{on}	_	35	-	nS
Turn-off Time (V $_{CC}$ = -10 V, I $_{B1}$ = I $_{B2}$ = -100 mA, I $_{C}$ = 1 A, R $_{L}$ = 3 Ω)	t _{off}	_	225	-	nS

^{4.} Pulsed Condition: Pulse Width = 300 μ sec, Duty Cycle \leq 2%.

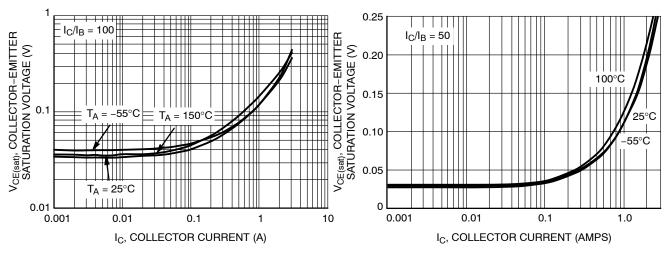


Figure 1. Collector Emitter Saturation Voltage versus Collector Current

Figure 2. Collector Emitter Saturation Voltage versus Collector Current

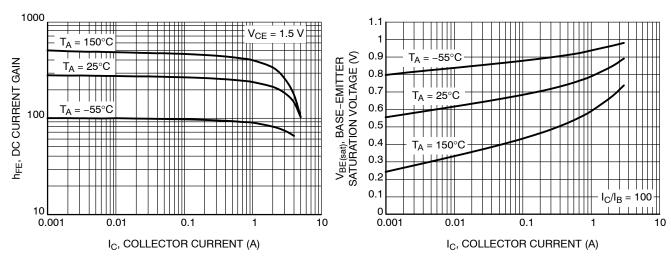


Figure 3. DC Current Gain versus Collector Current

Figure 4. Base Emitter Saturation Voltage versus Collector Current

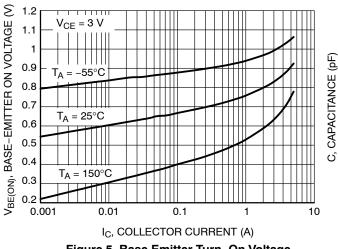


Figure 5. Base Emitter Turn-On Voltage versus Collector Current

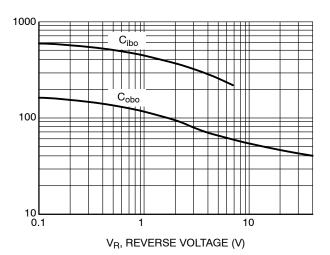


Figure 6. Capacitance

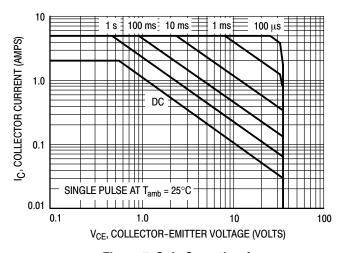


Figure 7. Safe Operating Area

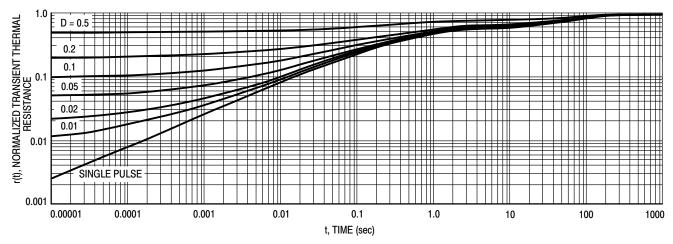
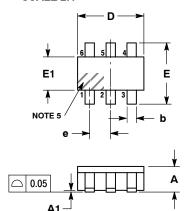
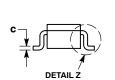


Figure 8. Normalized Thermal Response

TSOP-6 CASE 318G-02 **ISSUE V**

12


C SEATING PLANE


DATE 12 JUN 2012

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM
- LEAD THIORNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSIONS D
- AND E1 ARE DETERMINED AT DATUM H.
 PIN ONE INDICATOR MUST BE LOCATED IN THE INDICATED ZONE.

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.90	1.00	1.10	
A1	0.01	0.06	0.10	
b	0.25	0.38	0.50	
С	0.10	0.18	0.26	
D	2.90	3.00	3.10	
Е	2.50	2.75	3.00	
E1	1.30	1.50	1.70	
е	0.85	0.95	1.05	
Ĺ	0.20	0.40	0.60	
L2	0.25 BSC			
М	Uo.		100	

DETAIL Z

Н

TYLE 1: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SOURCE 5. DRAIN 6. DRAIN	STYLE 2: PIN 1. EMITTER 2 2. BASE 1 3. COLLECTOR 1 4. EMITTER 1 5. BASE 2 6. COLLECTOR 2
TYLE 7: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. N/C	

STYLE 9: PIN 1. LOW VOLTAGE GATE 2. DRAIN 3. D(in)+ 4. D(out)+ 5. D(out) 6. GND 3. SOURO

5. DRAIN 6. HIGH VOLTAGE GATE STYLE 15: PIN 1. ANODE

STYLE 3: PIN 1. ENABLE 2. N/C

5. V in

6. V out

3. R BOOST 4. Vz

SOURCE 3. GATE DRAIN 5. N/C 6. CATHODE STYLE 4: PIN 1. N/C 2. V in 3. NOT USED 4. GROUND 5. ENABLE 6. LOAD

2. GND

5. VBUS 6. D(IN)+

3. D(OUT)-4. D(IN)-

STYLE 5: PIN 1. EMITTER 2 2. BASE 2 STYLE 10 PIN 1. D(OUT)+

3. COLLECTOR 1 4. EMITTER 1 BASE 1 6. COLLECTOR 2 STYLE 11:

PIN 1. SOURCE 1 2. DRAIN 2 DRAIN 2 4 SOURCE 2

5. GATE 1 6. DRAIN 1/GATE 2 6. I/O

5. COLLECTOR 6. COLLECTOR STYLE 12: 2. GROUND 3. I/O 4. I/O

STYLE 6: PIN 1. COLLECTOR 2. COLLECTOR

3. BASE 4. EMITTER

STYLE 13: PIN 1. GATE 1 2. SOURCE 2 3. GATE 2

S

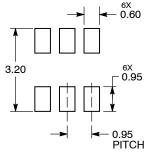
S

4. DRAIN 2 5. SOURCE 1 DRAIN 1

COLLECTOR

6. EMITTER

STYLE 14: PIN 1. ANODE SOURCE


3 GATE CATHODE/DRAIN CATHODE/DRAIN 5. CATHODE/DRAIN STYLE 16: PIN 1. ANODE/CATHODE

2. BASE 3. EMITTER COLLECTOR 5. ANODE CATHODE

STYLE 17: PIN 1. EMITTER 2. BASE 3 ANODE/CATHODE

CATHODE COLLECTOR

RECOMMENDED SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code Α

Υ = Year

W = Work Week = Pb-Free Package

XXX = Specific Device Code =Assembly Location M = Date Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present.

DOCUMENT NUMBER:	98ASB14888C	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSOP-6		PAGE 1 OF 1	

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

 \Diamond