

www.vishay.com

Vishay General Semiconductor

RoHS COMPLIANT

HALOGEN

FREE

Standard Avalanche SMD Rectifier

DO-214AC (SMA)

FEATURES

- Low profile package
- Ideal for automated placement
- Controlled avalanche characteristics
- · Glass passivated pellet chip junction
- Low reverse current
- High surge current capability
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- AEC-Q101 gualified
- · Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

TYPICAL APPLICATIONS

For use in general purpose rectification of power supplies, inverters, converters, and freewheeling diodes for consumer, automotive, and telecommunication.

MECHANICAL DATA

Case: DO-214AC (SMA)

Molding compound meets UL 94 V-0 flammability rating Base P/N-M3 - halogen-free, RoHS-compliant, and commercial grade

Base P/NHM3 - halogen-free, RoHS-compliant, and AEC-Q101 qualified

Terminals: Matte tin plated leads, solderable per J-STD-002 and JESD 22-B102

M3 suffix meets JESD 201 class 1A whisker test, HM3 suffix meets JESD 201 class 2 whisker test

Note

BYG10Y for commercial grade only

Polarity: Color band denotes the cathode end

MAXIMUM RATINGS ($T_A = 25 \text{ °C}$ unless otherwise noted)									
PARAMETER	SYMBOL	BYG10D	BYG10G	BYG10J	BYG10K	BYG10M	BYG10Y	UNIT	
Device marking code		BYG10D	BYG10G	BYG10J	BYG10K	BYG10M	BYG10Y		
Maximum repetitive peak reverse voltage	V _{RRM} 200 400 600 800 1000 16				1600	V			
Average forward current	I _{F(AV)}	1.5						А	
Peak forward surge current 10 ms single half sine-wave superimposed on rated load	I _{FSM}	30						А	
Pulse energy in avalanche mode, non repetitive (inductive load switch off) $I_{(BR)R} = 1 A, T_J = 25 \ ^{\circ}C$ (for BYG10D thru BYG10M) $I_{(BR)R} = 0.4 A, T_J = 25 \ ^{\circ}C$ (for BYG10Y)	E _R	20						mJ	
Operating junction and storage temperature range	T _J , T _{STG}	-55 to +150						°C	

Revision: 19-Feb-16 Document Number: 89472 1 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

PRIMARY CHARACTERISTICS 1.5 A I_{F(AV)} 200 V, 400 V, 600 V, 800 V, V_{RRM} 1000 V, 1600 V 30 A IFSM 1.0 µA I_R V_{F} 1.15 V E_R 20 mJ 150 °C T_J max. Package DO-214AC (SMA) **Diode variations** Single die

www.vishay.com

Vishay General Semiconductor

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise noted)										
PARAMETER	TEST CONDITIONS		SYMBOL	BYG10D	BYG10G	BYG10J	BYG10K	BYG10M	BYG10Y	UNIT
Maximum instantaneous	I _F = 1 A	T _{.1} = 25 °C V _F		1.1						v
forward voltage ⁽¹⁾	I _F = 1.5 A	1j = 25 0	25 °C V _F		1.15					
Maximum DC reverse	$\mathcal{M} = \mathcal{M}$	$T_{\rm J} = 25 ^{\circ}{\rm C}$								
current	$V_{R} = V_{RRM}$	T _J = 100 °C	I _R	10					μA	
Maximum reverse recovery time	I _F = 0.5 A, I _F I _{rr} = 0.25 A	= 1.0 A, t _{rr}		4						μs

Note

ISHAY

 $^{(1)}\,$ Pulse test: 300 μs pulse width, 1 % duty cycle

THERMAL CHARACTERISTICS ($T_A = 25 \text{ °C}$ unless otherwise noted)									
PARAMETER	SYMBOL	BOL BYG10D BYG10G BYG10J BYG10K BYG10M BYC				BYG10Y	UNIT		
Typical thermal resistance, junction to lead	$R_{\theta JL}$	25						°C/W	
	R _{0JA} ⁽¹⁾	150						°C/W	
Typical thermal resistance, junction to ambient	R _{0JA} ⁽²⁾	125							
	R _{0JA} ⁽³⁾	100							

Notes

⁽¹⁾ Mounted on epoxy-glass hard tissue

 $^{(2)}$ Mounted on epoxy-glass hard tissue, 50 mm 2 35 μm Cu

(3) Mounted on Al-oxide-ceramic (Al₂O₃), 50 mm² 35 µm Cu

ORDERING INFORMATION (Example)									
PREFERRED P/N	UNIT WEIGHT (g)	PREFERRED PACKAGE CODE	BASE QUANTITY	DELIVERY MODE					
BYG10D-M3/TR	0.064	TR	1800	7" diameter plastic tape and reel					
BYG10D-M3/TR3	0.064	TR3	7500	13" diameter plastic tape and reel					
BYG10DHM3/TR ⁽¹⁾	0.064	TR	1800	7" diameter plastic tape and reel					
BYG10DHM3/TR3 ⁽¹⁾	0.064	TR3	7500	13" diameter plastic tape and reel					

Note

(1) AEC-Q101 qualified

RATINGS AND CHARACTERISTICS CURVES (T_A = 25 °C unless otherwise noted)

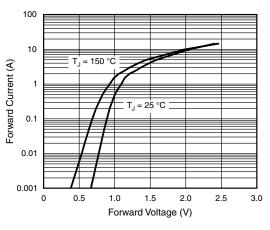
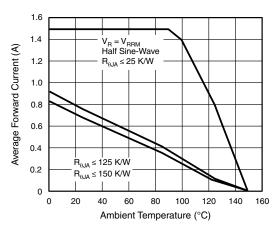
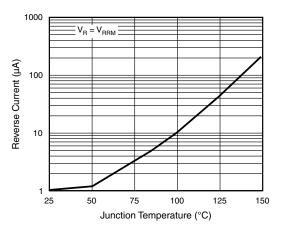


Fig. 1 - Forward Current vs. Forward Voltage




Fig. 2 - Max. Average Forward Current vs. Ambient Temperature

Revision: 19-Feb-16

2

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay General Semiconductor

www.vishay.com

SHAY

Fig. 3 - Reverse Current vs. Junction Temperature

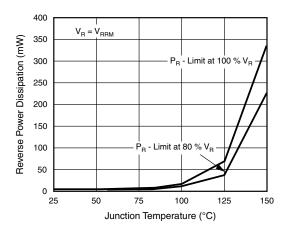


Fig. 4 - Max. Reverse Power Dissipation vs. Junction Temperature

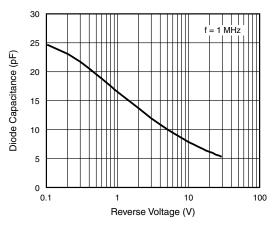


Fig. 5 - Diode Capacitance vs. Reverse Voltage

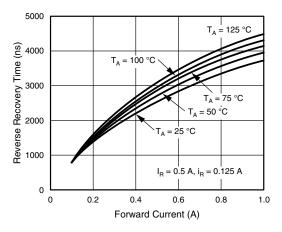


Fig. 6 - Reverse Recovery Time vs. Forward Current

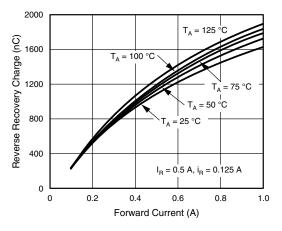
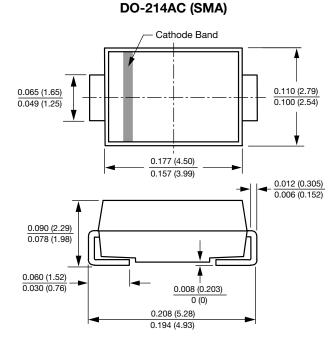
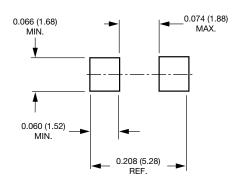


Fig. 7 - Reverse Recovery Charge vs. Forward Current

3

Document Number: 89472


For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>


Vishay General Semiconductor

PACKAGE OUTLINE DIMENSIONS in inches (millimeters)

www.vishay.com

VISHAY

Mounting Pad Layout

 Revision: 19-Feb-16
 4
 Document Number: 89472

 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.