74HC595

8-Bit Serial-Input/Serial or Parallel-Output Shift Register with Latched 3-State Outputs
 High-Performance Silicon-Gate CMOS

The 74HC595 consists of an 8-bit shift register and an 8-bit D-type latch with three-state parallel outputs. The shift register accepts serial data and provides a serial output. The shift register also provides parallel data to the 8 -bit latch. The shift register and latch have independent clock inputs. This device also has an asynchronous reset for the shift register.

The HC595 directly interfaces with the SPI serial data port on CMOS MPUs and MCUs.

Features

- Output Drive Capability: 15 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: $1.0 \mu \mathrm{~A}$
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC

Standard No. 7A

- ESD Performance: HBM > 2000 V; Machine Model > 200 V
- Chip Complexity: 328 FETs or 82 Equivalent Gates
- Improvements over HC595
- Improved Propagation Delays
- 50% Lower Quiescent Power
- Improved Input Noise and Latchup Immunity
- These are Pb -Free Devices

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

MARKING DIAGRAMS

TSSOP-16 DT SUFFIX CASE 948F

HC595 = Device Code
A = Assembly Location
L, WL = Wafer Lot
$\mathrm{Y}, \mathrm{YY}=$ Year
W, WW = Work Week
G or : = Pb-Free Package
(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

PIN ASSIGNMENT		
$\mathrm{Q}_{\mathrm{B}} \mathrm{l}^{\bullet}$	16	V_{CC}
$Q_{C}[2$	15	Q_{A}
$Q_{D}[3$	14	$\square \mathrm{A}$
Q_{E} ¢ 4	13	OUTPUT ENABLE
$Q_{F} \ 5$	12	LATCH CLOCK
$Q_{G}[6$	11	SHIFT CLOCK
$\mathrm{Q}_{\mathrm{H}} \mathrm{C} 7$	10	RESET
GND [8	9	$\square \mathrm{SQ}_{\mathrm{H}}$

ORDERING INFORMATION

Device	Package	Shipping †
74HC595DR2G	SOIC-16 (Pb-Free)	2500 Tape \& Reel
74HC595DTR2G	TSSOP-16*	2500 Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*This package is inherently Pb -Free.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
$\mathrm{~V}_{\text {in }}$	DC Input Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\text {out }}$	DC Output Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{I}_{\text {in }}$	DC Input Current, per Pin	± 20	mA
$\mathrm{I}_{\text {out }}$	DC Output Current, per Pin	± 35	mA
I_{CC}	DC Supply Current, V_{CC} and GND Pins	± 75	mA
P_{D}	Power Dissipation in Still Air,SOIC Packaget TSSOP Package \dagger	500	mW
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds (SOIC or TSSOP Package)	260	${ }^{\circ} \mathrm{C}$

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $V_{\text {out }}$ should be constrained to the range $\mathrm{GND} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{CC}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
\dagger Derating - SOIC Package: $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
TSSOP Package: - $6.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
For high frequency or heavy load considerations, see Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D).
RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{Cc}	DC Supply Voltage (Referenced to GND)	2.0	6.0	V
$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	DC Input Voltage, Output Voltage (Referenced to GND)	0	V_{CC}	V
$\mathrm{T}_{\text {A }}$	Operating Temperature, All Package Types	-55	+ 125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time (Figure 1) $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 1000 \\ 500 \\ 400 \end{gathered}$	ns

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

Symbol	Parameter	Test Conditions	V_{cc} (V)	Guaranteed Limit			Unit	
				- 55 to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$		
V_{IH}	Minimum High-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \mid \mathrm{l}_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	V	
VIL	Maximum Low-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \mid \mathrm{l}_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	V	
V_{OH}	Minimum High-Level Output Voltage, $\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{l}_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$ $\begin{array}{\|ll} \hline \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} & \left\|\left.\right\|_{\text {out }} \leq 2.4 \mathrm{~mA}\right. \\ & \left\|\left.\right\|_{\text {out }} \leq 6.0 \mathrm{~mA}\right. \\ & \left\|\left.\right\|_{\text {out }} \leq 7.8 \mathrm{~mA}\right. \end{array}$	2.0 4.5 6.0 3.0 4.5 6.0	$\begin{aligned} & \hline 1.9 \\ & 4.4 \\ & 5.9 \\ & \hline 2.48 \\ & 3.98 \\ & 5.48 \end{aligned}$	$\begin{aligned} & \hline 1.9 \\ & 4.4 \\ & 5.9 \\ & \hline 2.34 \\ & 3.84 \\ & 5.34 \end{aligned}$	1.9 4.4 5.9 2.2 3.7 5.2	V	
$\mathrm{V}_{\text {OL }}$	Maximum Low-Level Output Voltage, $Q_{A}-Q_{H}$	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mid l_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL} $\left\|\left.\right\|_{\text {out }} \leq 2.4 \mathrm{~mA}\right.$ $\left\|\left.\right\|_{\text {out }} \leq 6.0 \mathrm{~mA}\right.$ $\mid l_{\text {out }} \leq 7.8 \mathrm{~mA}$	2.0 4.5 6.0 3.0 4.5 6.0	0.1 0.1 0.1 0.26 0.26 0.26	0.1 0.1 0.1 0.33 0.33 0.33	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \\ & \hline 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$	V	
V_{OH}	Minimum High-Level Output Voltage, SQ_{H}	$\begin{aligned} & V_{\text {in }}=V_{\text {IH }} \text { or } V_{\text {IL }} \\ & \\|_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$ $\begin{array}{\|ll} \hline \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} & \mathrm{l}_{\text {out }} \leq 2.4 \mathrm{~mA} \\ & \mathrm{I}_{\text {out }} \leq 4.0 \mathrm{~mA} \\ & \mathrm{I}_{\text {out }} \leq 5.2 \mathrm{~mA} \end{array}$	2.0 2.0 4.5 6.0 3.0 4.5 6.0	1.9 4.4 5.9 2.98 3.98 5.48	1.9 4.4 5.9 2.34 3.84 5.34	1.9 4.4 5.9 2.2 3.7 5.2	V	
VoL	Maximum Low-Level Output Voltage, SQ $_{\mathrm{H}}$	$\begin{aligned} & V_{\text {in }}=V_{\text {IH }} \text { or } V_{\text {IL }} \\ & \\|_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$ $\begin{array}{\|ll} \hline \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} & \mathrm{l}_{\text {out }} \leq 2.4 \mathrm{~mA} \\ & \mathrm{I}_{\text {out }} \leq 4.0 \mathrm{~mA} \\ & \mathrm{I}_{\text {out }} \leq 5.2 \mathrm{~mA} \end{array}$	2.0 2.0 4.5 6.0 3.0 4.5 6.0	0.1 0.1 0.1 0.26 0.26 0.26	0.1 0.1 0.1 0.33 0.33 0.33	0.1 0.1 0.1 0.4 0.4 0.4	V	
$\mathrm{l}_{\text {in }}$	Maximum Input Leakage Current	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {CC }}$ or GND	6.0	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$	
loz	Maximum Three-State Leakage Current, $\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	Output in High-Impedance State $\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH} $V_{\text {out }}=V_{C C}$ or GND	6.0	± 0.25	± 2.5	± 2.5	$\mu \mathrm{A}$	
${ }^{\text {c }}$ C	Maximum Quiescent Supply Current (per Package)	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \mathrm{l}_{\text {out }}=0 \mu \mathrm{~A} \end{aligned}$	6.0	4.0	40	40	$\mu \mathrm{A}$	

NOTE: Information on typical parametric values can be found in Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D).

AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6.0 \mathrm{~ns}$)

Symbol	Parameter	$V_{c c}$ (V)	Guaranteed Limit			Unit
			- 55 to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125{ }^{\circ} \mathrm{C}$	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency (50\% Duty Cycle) (Figures 1 and 7)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 15 \\ & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & \hline 4.8 \\ & 10 \\ & 24 \\ & 28 \end{aligned}$	$\begin{aligned} & \hline 4.0 \\ & 8.0 \\ & 20 \\ & 24 \end{aligned}$	MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Maximum Propagation Delay, Shift Clock to SQ_{H} (Figures 1 and 7)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 140 \\ 100 \\ 28 \\ 24 \end{gathered}$	$\begin{aligned} & 175 \\ & 125 \\ & 35 \\ & 30 \end{aligned}$	$\begin{gathered} \hline 210 \\ 150 \\ 42 \\ 36 \end{gathered}$	ns
$\mathrm{t}_{\mathrm{PHL}}$	Maximum Propagation Delay, Reset to SQ_{H} (Figures 2 and 7)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 145 \\ & 100 \\ & 29 \\ & 25 \end{aligned}$	$\begin{gathered} \hline 180 \\ 125 \\ 36 \\ 31 \end{gathered}$	$\begin{gathered} \hline 220 \\ 150 \\ 44 \\ 38 \end{gathered}$	ns
$t_{\text {PLH }}$, $t_{\text {PHL }}$	Maximum Propagation Delay, Latch Clock to $Q_{A}-Q_{H}$ (Figures 3 and 7)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 140 \\ 100 \\ 28 \\ 24 \end{gathered}$	$\begin{aligned} & 175 \\ & 125 \\ & 35 \\ & 30 \end{aligned}$	$\begin{gathered} 210 \\ 150 \\ 42 \\ 36 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLZ}}, \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Maximum Propagation Delay, Output Enable to $Q_{A}-Q_{H}$ (Figures 4 and 8)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 150 \\ 100 \\ 30 \\ 26 \end{gathered}$	$\begin{gathered} 190 \\ 125 \\ 38 \\ 33 \end{gathered}$	$\begin{gathered} 225 \\ 150 \\ 45 \\ 38 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZL}}, \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Maximum Propagation Delay, Output Enable to $Q_{A}-Q_{H}$ (Figures 4 and 8)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 135 \\ 90 \\ 27 \\ 23 \end{gathered}$	$\begin{gathered} \hline 170 \\ 110 \\ 34 \\ 29 \end{gathered}$	$\begin{gathered} 205 \\ 130 \\ 41 \\ 35 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}}, \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Maximum Output Transition Time, $\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$ (Figures 3 and 7)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 60 \\ & 23 \\ & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & \hline 75 \\ & 27 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 90 \\ & 31 \\ & 18 \\ & 15 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{TLH}}$, ${ }^{t_{\text {THL }}}$	Maximum Output Transition Time, SQ $_{H}$ (Figures 1 and 7)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 75 \\ & 27 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 32 \\ & 19 \\ & 16 \end{aligned}$	$\begin{gathered} \hline 110 \\ 36 \\ 22 \\ 19 \end{gathered}$	ns
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance	-	10	10	10	pF
Cout	Maximum Three-State Output Capacitance (Output in High-Impedance State), $\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	-	15	15	15	pF

NOTE: For propagation delays with loads other than 50 pF , and information on typical parametric values, see Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D).

		Typical @ $\mathbf{2 5}{ }^{\circ} \mathbf{C}, \mathbf{V}_{\mathbf{C C}}=\mathbf{5 . 0} \mathbf{~ V}$	
C_{PD}	Power Dissipation Capacitance (Per Package)*	$\mathbf{p F}$	

[^0]TIMING REQUIREMENTS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6.0 \mathrm{~ns}$)

Symbol	Parameter	$V_{c c}$ (V)	Guaranteed Limit			Unit
			$25^{\circ} \mathrm{C}$ to $-55^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Serial Data Input A to Shift Clock (Figure 5)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \\ & 10 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 65 \\ & 50 \\ & 13 \\ & 11 \end{aligned}$	$\begin{aligned} & 75 \\ & 60 \\ & 15 \\ & 13 \end{aligned}$	ns
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Shift Clock to Latch Clock (Figure 6)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 60 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 70 \\ & 19 \\ & 16 \end{aligned}$	$\begin{aligned} & \hline 110 \\ & 80 \\ & 22 \\ & 19 \end{aligned}$	ns
$t_{\text {h }}$	Minimum Hold Time, Shift Clock to Serial Data Input A (Figure 5)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$	ns
$\mathrm{t}_{\text {rec }}$	Minimum Recovery Time, Reset Inactive to Shift Clock (Figure 2)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \\ & 10 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 65 \\ & 50 \\ & 13 \\ & 11 \end{aligned}$	$\begin{aligned} & 75 \\ & 60 \\ & 15 \\ & 13 \end{aligned}$	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Reset (Figure 2)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 60 \\ & 45 \\ & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 75 \\ & 60 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 90 \\ & 70 \\ & 18 \\ & 15 \end{aligned}$	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Shift Clock (Figure 1)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \\ & 10 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 65 \\ & 50 \\ & 13 \\ & 11 \end{aligned}$	$\begin{aligned} & 75 \\ & 60 \\ & 15 \\ & 13 \end{aligned}$	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Latch Clock (Figure 6)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \\ & 10 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 65 \\ & 50 \\ & 13 \\ & 11 \end{aligned}$	$\begin{aligned} & 75 \\ & 60 \\ & 15 \\ & 13 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Maximum Input Rise and Fall Times (Figure 1)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 1000 \\ 800 \\ 500 \\ 400 \end{gathered}$	$\begin{gathered} \hline 1000 \\ 800 \\ 500 \\ 400 \end{gathered}$	$\begin{gathered} \hline 1000 \\ 800 \\ 500 \\ 400 \end{gathered}$	ns

FUNCTION TABLE

Operation	Inputs					Resulting Function			
	Reset	Serial Input A	Shift Clock	Latch Clock	Output Enable	Shift Register Contents	Latch Register Contents	Serial Output S_{H}	Parallel Outputs $Q_{A}-Q_{H}$
Reset shift register	L	X	X	L, H, \downarrow	L	L	U	L	U
Shift data into shift register	H	D	\uparrow	L, H, \downarrow	L	$\begin{gathered} \mathrm{D} \rightarrow \mathrm{SR}_{\mathrm{A}} ; \\ \mathrm{SR}_{\mathrm{N}} \rightarrow \mathrm{SR}_{\mathrm{N}+1} \end{gathered}$	U	$\mathrm{SR}_{\mathrm{G}} \rightarrow \mathrm{SR}_{\mathrm{H}}$	U
Shift register remains unchanged	H	X	L, H, \downarrow	L, H, \downarrow	L	U	U	U	U
Transfer shift register contents to latch register	H	X	L, H, \downarrow	\uparrow	L	U	$\mathrm{SR}_{\mathrm{N}} \rightarrow \mathrm{LR}_{\mathrm{N}}$	U	SR_{N}
Latch register remains unchanged	X	X	X	L, H, \downarrow	L	*	U	*	U
Enable parallel outputs	X	X	X	X	L	*	**	*	Enabled
Force outputs into high impedance state	X	X	X	X	H	*	**	*	Z
SR = shift register contents LR = latch register contents	D = data (L, H) logic level $\mathrm{U}=$ remains unchanged				$\begin{aligned} & \uparrow=\text { Low-to-High } \\ & \downarrow=\text { High-to-Low } \end{aligned}$		* = depends on Reset and Shift Clock inputs ** $=$ depends on Latch Clock input		

PIN DESCRIPTIONS

INPUTS

A (Pin 14)

Serial Data Input. The data on this pin is shifted into the 8-bit serial shift register.

CONTROL INPUTS

Shift Clock (Pin 11)

Shift Register Clock Input. A low- to-high transition on this input causes the data at the Serial Input pin to be shifted into the 8 -bit shift register.

Reset (Pin 10)

Active-low, Asynchronous, Shift Register Reset Input. A low on this pin resets the shift register portion of this device only. The 8-bit latch is not affected.

Latch Clock (Pin 12)

Storage Latch Clock Input. A low-to-high transition on this input latches the shift register data.

Output Enable (Pin 13)

Active-low Output Enable. A low on this input allows the data from the latches to be presented at the outputs. A high on this input forces the outputs $\left(\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}\right)$ into the high-impedance state. The serial output is not affected by this control unit.

OUTPUTS

$Q_{A}-Q_{H}$ (Pins 15, 1, 2, 3, 4, 5, 6, 7)
Noninverted, 3-state, latch outputs.

$\mathbf{S Q}_{\mathrm{H}}(\operatorname{Pin} 9)$

Noninverted, Serial Data Output. This is the output of the eighth stage of the 8 -bit shift register. This output does not have three-state capability.

74HC595

SWITCHING WAVEFORMS

Figure 1.

Figure 3.

Figure 5.

Figure 2.

Figure 4.

Figure 6.

TEST CIRCUITS

*Includes all probe and jig capacitance
Figure 7.

Figure 8.

EXPANDED LOGIC DIAGRAM

74HC595

TIMING DIAGRAM

74HC595

PACKAGE DIMENSIONS

SOIC-16
CASE 751B-05
ISSUE K

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD

DIMENSIONS A AND B DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION $0.15(0.006)$ PER SIDE
5. DIMENSION D DOES NOT INCLUDE DAMBAR

PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	9.80	10.00	0.386	0.393
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27 BSC		0.050 BSC	
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
P	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSSOP-16
CASE 948F-01
ISSUE B

SOLDERING FOOTPRINT*

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

74HC595

ON Semiconductor and 10 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, aftiliates, associated with such unintended or claims, costs, damages, and expenses, and reasonable attorney fees arising out of dires or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]: *Used to determine the no-load dynamic power consumption: $P_{D}=C_{P D} V_{C C}{ }^{2} f+I_{C C} V_{C C}$. For load considerations, see Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D).

